/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "HOGMultiDetection.h" #include "Derivative.h" #include "HOGDescriptor.h" #include "HOGDetector.h" #include "Magnitude.h" #include "Phase.h" namespace arm_compute { namespace test { namespace validation { namespace reference { namespace { void validate_models(const std::vector &models) { ARM_COMPUTE_ERROR_ON(0 == models.size()); for(size_t i = 1; i < models.size(); ++i) { ARM_COMPUTE_ERROR_ON_MSG(models[0].phase_type() != models[i].phase_type(), "All HOG parameters must have the same phase type"); ARM_COMPUTE_ERROR_ON_MSG(models[0].normalization_type() != models[i].normalization_type(), "All HOG parameters must have the same normalization_type"); ARM_COMPUTE_ERROR_ON_MSG((models[0].l2_hyst_threshold() != models[i].l2_hyst_threshold()) && (models[0].normalization_type() == arm_compute::HOGNormType::L2HYS_NORM), "All HOG parameters must have the same l2 hysteresis threshold if you use L2 hysteresis normalization type"); } } } // namespace void detection_windows_non_maxima_suppression(std::vector &multi_windows, float min_distance) { const size_t num_candidates = multi_windows.size(); size_t num_detections = 0; // Sort by idx_class first and by score second std::sort(multi_windows.begin(), multi_windows.end(), [](const DetectionWindow & lhs, const DetectionWindow & rhs) { if(lhs.idx_class < rhs.idx_class) { return true; } if(rhs.idx_class < lhs.idx_class) { return false; } // idx_classes are equal so compare by score if(lhs.score > rhs.score) { return true; } if(rhs.score > lhs.score) { return false; } return false; }); const float min_distance_pow2 = min_distance * min_distance; // Euclidean distance for(size_t i = 0; i < num_candidates; ++i) { if(0.0f != multi_windows.at(i).score) { DetectionWindow cur; cur.x = multi_windows.at(i).x; cur.y = multi_windows.at(i).y; cur.width = multi_windows.at(i).width; cur.height = multi_windows.at(i).height; cur.idx_class = multi_windows.at(i).idx_class; cur.score = multi_windows.at(i).score; // Store window multi_windows.at(num_detections) = cur; ++num_detections; const float xc = cur.x + cur.width * 0.5f; const float yc = cur.y + cur.height * 0.5f; for(size_t k = i + 1; k < (num_candidates) && (cur.idx_class == multi_windows.at(k).idx_class); ++k) { const float xn = multi_windows.at(k).x + multi_windows.at(k).width * 0.5f; const float yn = multi_windows.at(k).y + multi_windows.at(k).height * 0.5f; const float dx = std::fabs(xn - xc); const float dy = std::fabs(yn - yc); if(dx < min_distance && dy < min_distance) { const float d = dx * dx + dy * dy; if(d < min_distance_pow2) { // Invalidate detection window multi_windows.at(k).score = 0.0f; } } } } } multi_windows.resize(num_detections); } template std::vector hog_multi_detection(const SimpleTensor &src, BorderMode border_mode, T constant_border_value, const std::vector &models, std::vector> descriptors, unsigned int max_num_detection_windows, float threshold, bool non_maxima_suppression, float min_distance) { ARM_COMPUTE_ERROR_ON(descriptors.size() != models.size()); validate_models(models); const size_t width = src.shape().x(); const size_t height = src.shape().y(); const size_t num_models = models.size(); // Initialize previous values size_t prev_num_bins = models[0].num_bins(); Size2D prev_cell_size = models[0].cell_size(); Size2D prev_block_size = models[0].block_size(); Size2D prev_block_stride = models[0].block_stride(); std::vector input_orient_bin; std::vector input_hog_detect; std::vector> input_block_norm; input_orient_bin.push_back(0); input_hog_detect.push_back(0); input_block_norm.emplace_back(0, 0); // Iterate through the number of models and check if orientation binning // and block normalization steps can be skipped for(size_t i = 1; i < num_models; ++i) { size_t cur_num_bins = models[i].num_bins(); Size2D cur_cell_size = models[i].cell_size(); Size2D cur_block_size = models[i].block_size(); Size2D cur_block_stride = models[i].block_stride(); // Check if binning and normalization steps are required if((cur_num_bins != prev_num_bins) || (cur_cell_size.width != prev_cell_size.width) || (cur_cell_size.height != prev_cell_size.height)) { prev_num_bins = cur_num_bins; prev_cell_size = cur_cell_size; prev_block_size = cur_block_size; prev_block_stride = cur_block_stride; // Compute orientation binning and block normalization. Update input to process input_orient_bin.push_back(i); input_block_norm.emplace_back(i, input_orient_bin.size() - 1); } else if((cur_block_size.width != prev_block_size.width) || (cur_block_size.height != prev_block_size.height) || (cur_block_stride.width != prev_block_stride.width) || (cur_block_stride.height != prev_block_stride.height)) { prev_block_size = cur_block_size; prev_block_stride = cur_block_stride; // Compute block normalization. Update input to process input_block_norm.emplace_back(i, input_orient_bin.size() - 1); } // Update input to process for hog detector input_hog_detect.push_back(input_block_norm.size() - 1); } size_t num_orient_bin = input_orient_bin.size(); size_t num_block_norm = input_block_norm.size(); size_t num_hog_detect = input_hog_detect.size(); std::vector> hog_spaces(num_orient_bin); std::vector> hog_norm_spaces(num_block_norm); // Calculate derivative SimpleTensor grad_x; SimpleTensor grad_y; std::tie(grad_x, grad_y) = derivative(src, border_mode, constant_border_value, GradientDimension::GRAD_XY); // Calculate magnitude and phase SimpleTensor _mag = magnitude(grad_x, grad_y, MagnitudeType::L2NORM); SimpleTensor _phase = phase(grad_x, grad_y, models[0].phase_type()); // Calculate Tensors for the HOG space and orientation binning for(size_t i = 0; i < num_orient_bin; ++i) { const size_t idx_multi_hog = input_orient_bin[i]; const size_t num_bins = models[idx_multi_hog].num_bins(); const size_t num_cells_x = width / models[idx_multi_hog].cell_size().width; const size_t num_cells_y = height / models[idx_multi_hog].cell_size().height; // TensorShape of hog space TensorShape hog_space_shape(num_cells_x, num_cells_y); // Initialise HOG space TensorInfo info_hog_space(hog_space_shape, num_bins, DataType::F32); hog_spaces.at(i) = SimpleTensor(info_hog_space.tensor_shape(), DataType::F32, info_hog_space.num_channels()); // For each cell create histogram based on magnitude and phase hog_orientation_binning(_mag, _phase, hog_spaces[i], models[idx_multi_hog]); } // Calculate Tensors for the normalized HOG space and block normalization for(size_t i = 0; i < num_block_norm; ++i) { const size_t idx_multi_hog = input_block_norm[i].first; const size_t idx_orient_bin = input_block_norm[i].second; // Create tensor info for HOG descriptor TensorInfo tensor_info(models[idx_multi_hog], src.shape().x(), src.shape().y()); hog_norm_spaces.at(i) = SimpleTensor(tensor_info.tensor_shape(), DataType::F32, tensor_info.num_channels()); // Normalize histograms based on block size hog_block_normalization(hog_norm_spaces[i], hog_spaces[idx_orient_bin], models[idx_multi_hog]); } std::vector multi_windows; // Calculate Detection Windows for HOG detector for(size_t i = 0; i < num_hog_detect; ++i) { const size_t idx_block_norm = input_hog_detect[i]; // NOTE: Detection window stride fixed to block stride const Size2D detection_window_stride = models[i].block_stride(); std::vector windows = hog_detector(hog_norm_spaces[idx_block_norm], descriptors[i], max_num_detection_windows, models[i], detection_window_stride, threshold, i); multi_windows.insert(multi_windows.end(), windows.begin(), windows.end()); } // Suppress Non-maxima detection windows if(non_maxima_suppression) { detection_windows_non_maxima_suppression(multi_windows, min_distance); } return multi_windows; } template std::vector hog_multi_detection(const SimpleTensor &src, BorderMode border_mode, uint8_t constant_border_value, const std::vector &models, std::vector> descriptors, unsigned int max_num_detection_windows, float threshold, bool non_maxima_suppression, float min_distance); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute