/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "HOGDetector.h" namespace arm_compute { namespace test { namespace validation { namespace reference { namespace { /** Computes the number of detection windows to iterate over in the feature vector. */ Size2D num_detection_windows(const TensorShape &shape, const Size2D &window_step, const HOGInfo &hog_info) { const size_t num_block_strides_width = hog_info.detection_window_size().width / hog_info.block_stride().width; const size_t num_block_strides_height = hog_info.detection_window_size().height / hog_info.block_stride().height; return Size2D(floor_to_multiple(shape.x() - num_block_strides_width, window_step.width) + window_step.width, floor_to_multiple(shape.y() - num_block_strides_height, window_step.height) + window_step.height); } } // namespace template std::vector hog_detector(const SimpleTensor &src, const std::vector &descriptor, unsigned int max_num_detection_windows, const HOGInfo &hog_info, const Size2D &detection_window_stride, float threshold, uint16_t idx_class) { ARM_COMPUTE_ERROR_ON_MSG((detection_window_stride.width % hog_info.block_stride().width != 0), "Detection window stride width must be multiple of block stride width"); ARM_COMPUTE_ERROR_ON_MSG((detection_window_stride.height % hog_info.block_stride().height != 0), "Detection window stride height must be multiple of block stride height"); // Create vector for identifying each detection window std::vector windows; // Calculate detection window step const Size2D window_step(detection_window_stride.width / hog_info.block_stride().width, detection_window_stride.height / hog_info.block_stride().height); // Calculate number of detection windows const Size2D num_windows = num_detection_windows(src.shape(), window_step, hog_info); // Calculate detection window and row offsets in feature vector const size_t src_offset_x = window_step.width * hog_info.num_bins() * hog_info.num_cells_per_block().area(); const size_t src_offset_y = window_step.height * hog_info.num_bins() * hog_info.num_cells_per_block().area() * src.shape().x(); const size_t src_offset_row = src.num_channels() * src.shape().x(); // Calculate detection window attributes const Size2D num_block_positions_per_detection_window = hog_info.num_block_positions_per_image(hog_info.detection_window_size()); const unsigned int num_bins_per_descriptor_x = num_block_positions_per_detection_window.width * src.num_channels(); const unsigned int num_blocks_per_descriptor_y = num_block_positions_per_detection_window.height; ARM_COMPUTE_ERROR_ON((num_bins_per_descriptor_x * num_blocks_per_descriptor_y + 1) != hog_info.descriptor_size()); size_t win_id = 0; // Traverse feature vector in detection window steps for(auto win_y = 0u, offset_y = 0u; win_y < num_windows.height; win_y += window_step.height, offset_y += src_offset_y) { for(auto win_x = 0u, offset_x = 0u; win_x < num_windows.width; win_x += window_step.width, offset_x += src_offset_x) { // Reset the score float score = 0.0f; // Traverse detection window for(auto y = 0u, offset_row = 0u; y < num_blocks_per_descriptor_y; ++y, offset_row += src_offset_row) { const int bin_offset = y * num_bins_per_descriptor_x; for(auto x = 0u; x < num_bins_per_descriptor_x; ++x) { // Compute Linear SVM const float a = src[x + offset_x + offset_y + offset_row]; const float b = descriptor[x + bin_offset]; score += a * b; } } // Add the bias. The bias is located at the position (descriptor_size() - 1) score += descriptor[num_bins_per_descriptor_x * num_blocks_per_descriptor_y]; if(score > threshold) { DetectionWindow window; if(win_id++ < max_num_detection_windows) { window.x = win_x * hog_info.block_stride().width; window.y = win_y * hog_info.block_stride().height; window.width = hog_info.detection_window_size().width; window.height = hog_info.detection_window_size().height; window.idx_class = idx_class; window.score = score; windows.push_back(window); } } } } return windows; } template std::vector hog_detector(const SimpleTensor &src, const std::vector &descriptor, unsigned int max_num_detection_windows, const HOGInfo &hog_info, const Size2D &detection_window_stride, float threshold, uint16_t idx_class); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute