/* * Copyright (c) 2017-2021, 2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "GEMM.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "tests/validation/reference/ArithmeticOperations.h" namespace arm_compute { namespace test { namespace validation { namespace reference { template ::value, int>::type> SimpleTensor gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta) { // Create reference SimpleTensor dst{c.shape(), c.data_type(), 1}; // Compute reference const int M = a.shape().y(); const int N = b.shape().x(); const int K = a.shape().x(); const int D = a.shape().z(); // Number of matrices in a batch const int W = a.shape()[3]; // Number of batched-gemm (Winograd case) const int a_stride_z = K * M; const int a_stride_w = K * M * D; const int b_stride_z = b.shape().num_dimensions() > 2 ? N * K : 0; // Do not slide the matrix B along the 3th dimension in case matrix B has less than 3 dimensions int b_stride_w = b.shape().num_dimensions() > 3 ? K * N * D : 0; // Do not slide the matrix B along the 4th dimension in case matrix B has less than 4 dimensions // Note: There are 3 gemm types: batched-gemm, multi-gemm, and batched of multi-gemms. The third dimension of tensor b is overloaded when tensor b has exactly 3 dimensions: // it can be either number of batches or multis. Batched-GEMM computation is detected only when the third dimension of "a" and "c" tensors is 1 and the number of dimensions is 4 const bool is_batched_gemm = b.shape().num_dimensions() == 3 && a.shape().num_dimensions() == 4 && c.shape().num_dimensions() == 4 && a.shape()[2] == 1 && c.shape()[2] == 1; // Batched-GEMM if (is_batched_gemm) { b_stride_w = b_stride_z; } const int c_stride_z = N * M; const int c_stride_w = N * M * D; #if defined(_OPENMP) && !(defined(__arm__) && defined(__ANDROID__)) #pragma omp parallel for collapse(2) #endif /* _OPENMP */ for (int w = 0; w < W; ++w) { for (int depth = 0; depth < D; ++depth) { const int base_addr_a = depth * a_stride_z + w * a_stride_w; const int base_addr_b = depth * b_stride_z + w * b_stride_w; const int base_addr_c = depth * c_stride_z + w * c_stride_w; for (int row = 0; row < M; ++row) { for (int col = 0; col < N; ++col) { T acc(0); for (int k = 0; k < K; ++k) { acc += a[base_addr_a + k + row * K] * b[base_addr_b + col + k * N]; } // Finalize the result: alpha * A * B + beta * C dst[base_addr_c + col + row * N] = alpha * acc + beta * c[base_addr_c + col + row * N]; } } } } return dst; } template ::value, int>::type> SimpleTensor gemm_mixed_precision( const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta) { // GEMM mixed-precision combines F32 accumulators with F16 multiplications // Create reference SimpleTensor dst{c.shape(), c.data_type(), 1}; // Compute reference const int M = a.shape().y(); const int N = b.shape().x(); const int K = a.shape().x(); const int D = a.shape().z(); // Number of matrices in a batch const int W = a.shape()[3]; // Number of batched-gemm (Winograd case) const int a_stride_z = K * M; const int a_stride_w = K * M * D; const int b_stride_z = b.shape().num_dimensions() > 2 ? N * K : 0; // Do not slide the matrix B along the 3th dimension in case matrix B has less than 3 dimensions int b_stride_w = b.shape().num_dimensions() > 3 ? K * N * D : 0; // Do not slide the matrix B along the 4th dimension in case matrix B has less than 4 dimensions // Note: There are 3 gemm types: batched-gemm, multi-gemm, and batched of multi-gemms. The third dimension of tensor b is overloaded when tensor b has exactly 3 dimensions: // it can be either number of batches or multis. Batched-GEMM computation is detected only when the third dimension of "a" and "c" tensors is 1 and the number of dimensions is 4 const bool is_batched_gemm = b.shape().num_dimensions() == 3 && a.shape().num_dimensions() == 4 && c.shape().num_dimensions() == 4 && a.shape()[2] == 1 && c.shape()[2] == 1; // Batched-GEMM if (is_batched_gemm) { b_stride_w = b_stride_z; } const int c_stride_z = N * M; const int c_stride_w = N * M * D; #if defined(_OPENMP) && !(defined(__arm__) && defined(__ANDROID__)) #pragma omp parallel for collapse(2) #endif /* _OPENMP */ for (int w = 0; w < W; ++w) { for (int depth = 0; depth < D; ++depth) { const int base_addr_a = depth * a_stride_z + w * a_stride_w; const int base_addr_b = depth * b_stride_z + w * b_stride_w; const int base_addr_c = depth * c_stride_z + w * c_stride_w; for (int row = 0; row < M; ++row) { for (int col = 0; col < N; ++col) { float acc(0); for (int k = 0; k < K; ++k) { acc += static_cast(a[base_addr_a + k + row * K] * b[base_addr_b + col + k * N]); } // Finalize the result: alpha * A * B + beta * C dst[base_addr_c + col + row * N] = static_cast(alpha * acc + beta * c[base_addr_c + col + row * N]); } } } } return dst; } template ::value, int>::type> void gemm_accumulate(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, SimpleTensor &dst) { // Compute reference SimpleTensor dst_gemm = gemm(a, b, c, alpha, beta); reference::arithmetic_operation(reference::ArithmeticOperation::ADD, dst, dst_gemm, dst, ConvertPolicy::SATURATE); } template SimpleTensor gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta); template SimpleTensor gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta); template SimpleTensor gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta); template void gemm_accumulate(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, SimpleTensor &dst); template void gemm_accumulate(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, SimpleTensor &dst); template SimpleTensor gemm_mixed_precision(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute