/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ConvolutionLayer.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/Convolution3d.h" #include "tests/validation/reference/Permute.h" #include "tests/validation/reference/Utils.h" #include "tests/validation/reference/UtilsQuantizedAsymm.h" #include "tests/framework/Asserts.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" namespace arm_compute { namespace test { namespace validation { namespace reference { namespace { } // namespace template SimpleTensor convolution_layer_nchw(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, SimpleTensor &dst, const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups) { ARM_COMPUTE_ERROR_ON((src.shape()[2] / num_groups) != weights.shape()[2]); // Compute reference const int width_in = src.shape().x(); const int height_in = src.shape().y(); const int depth_in = src.shape().z(); const int width_out = dst.shape().x(); const int height_out = dst.shape().y(); const int depth_out = dst.shape().z(); const int width_weights = weights.shape().x(); const int height_weights = weights.shape().y(); const int depth_weights = weights.shape().z(); const int pad_left = info.pad_left(); const int pad_top = info.pad_top(); const int stride_xi = info.stride().first; const int stride_yi = info.stride().second; auto output_wh = scaled_dimensions(width_in, height_in, width_weights, height_weights, info, dilation); const int start_xi = (dilation.x() * (width_weights - 1) + 1) / 2 - pad_left; const int start_yi = (dilation.y() * (height_weights - 1) + 1) / 2 - pad_top; const int end_xi = output_wh.first * stride_xi; const int end_yi = output_wh.second * stride_yi; const int num_batches = src.shape().total_size() / (width_in * height_in * depth_in); for(int r = 0; r < num_batches; ++r) { for(int yi = start_yi; yi < start_yi + end_yi; yi += stride_yi) { for(int xi = start_xi; xi < start_xi + end_xi; xi += stride_xi) { for(int group = 0; group < static_cast(num_groups); ++group) { for(int ofm = 0; ofm < static_cast(depth_out / num_groups); ++ofm) { // Compute input and output offsets const int offset_in = r * width_in * height_in * depth_in + (group * (depth_in / num_groups) * width_in * height_in); const int xo = (xi - start_xi) / stride_xi; const int yo = (yi - start_yi) / stride_yi; const int offset_out = xo + yo * width_out + ((ofm + group * (depth_out / num_groups)) * width_out * height_out) + (r * width_out * height_out * depth_out); const int offset_w = (ofm + group * (depth_out / num_groups)) * width_weights * height_weights * depth_weights; const int offset_b = (ofm + group * (depth_out / num_groups)); ARM_COMPUTE_ASSERT(xo < width_out); ARM_COMPUTE_ASSERT(yo < height_out); // Compute 3D convolution convolution_3d::detail::convolution3d(src, weights, bias, dst, offset_in, offset_w, offset_b, offset_out, xi, yi, width_in, height_in, (depth_in / num_groups), width_weights, height_weights, dilation.x(), dilation.y()); } } } } } return dst; } template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info) { // if no explicit quantization has been set you the same as src if(out_quant_info == QuantizationInfo()) { out_quant_info = src.quantization_info(); } // Create reference SimpleTensor dst{ output_shape, src.data_type(), 1, out_quant_info }; if(src.data_layout() == DataLayout::NHWC) { SimpleTensor src_nchw = reference::permute(src, PermutationVector(1U, 2U, 0U)); SimpleTensor weights_nchw = reference::permute(weights, PermutationVector(1U, 2U, 0U)); SimpleTensor dst_nchw = reference::permute(dst, PermutationVector(1U, 2U, 0U)); return reference::permute(convolution_layer_nchw(src_nchw, weights_nchw, bias, dst_nchw, info, dilation, num_groups), PermutationVector(2U, 0U, 1U)); } else { return convolution_layer_nchw(src, weights, bias, dst, info, dilation, num_groups); } } template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info); template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info); template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute