/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H__ #define __ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H__ #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/UtilsQuantizedAsymm.h" namespace arm_compute { namespace test { namespace convolution_3d { namespace detail { inline bool is_valid_pixel(int i, int min, int max) { return (i >= min && i < max); } // 3D convolution for floating point type template < typename T, typename TW, typename TB, typename std::enable_if < validation::is_floating_point::value &&validation::is_floating_point::value &&validation::is_floating_point::value, int >::type = 0 > inline void convolution3d(const SimpleTensor &in, const SimpleTensor &weights, const SimpleTensor &bias, SimpleTensor &out, int i_offset, int w_offset, int b_offset, int o_offset, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1, int filter_id = 0) { ARM_COMPUTE_UNUSED(filter_id); const T *in_ptr = in.data() + i_offset; const TW *w_ptr = weights.data() + w_offset; const TB *b_ptr = bias.data() + b_offset; T *out_ptr = out.data() + o_offset; const int half_width_weights_start = width_weights / 2; const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start; const int half_height_weights_start = height_weights / 2; const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start; // Reset accumulator T acc(0); // Compute a 2D convolution for each IFM and accumulate the result for(int ifm = 0; ifm < depth_in; ++ifm) { // Compute the offset for the input slice const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in; // Compute 2D convolution for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk) { for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk) { // Check if the pixel is out-of-bound if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in)) { const int idx = xk + half_width_weights_start; const int idy = yk + half_height_weights_start; const T i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in]; const TW w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights]; acc += i_value * w_value; } } } } // Accumulate the bias and store the result *out_ptr = acc + (*b_ptr); } // 3D convolution for QASYMM8 type template < typename T, typename TW, typename TB, typename std::enable_if < std::is_same::value &&(std::is_same::value || std::is_same::value) &&std::is_same::value, int >::type = 0 > inline void convolution3d(const SimpleTensor &in, const SimpleTensor &weights, const SimpleTensor &bias, SimpleTensor &out, int i_offset, int w_offset, int b_offset, int o_offset, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1, int filter_id = 0) { const T *in_ptr = in.data() + i_offset; const TW *w_ptr = weights.data() + w_offset; const TB *b_ptr = bias.data() + b_offset; T *out_ptr = out.data() + o_offset; const UniformQuantizationInfo iq_info = in.quantization_info().uniform(); const UniformQuantizationInfo wq_info = weights.quantization_info().uniform(); const UniformQuantizationInfo oq_info = out.quantization_info().uniform(); const int input_offset = -iq_info.offset; const float input_scale = iq_info.scale; int weights_offset = -wq_info.offset; float weights_scale = wq_info.scale; if(is_data_type_quantized_per_channel(weights.data_type())) { if(is_data_type_quantized_asymmetric(weights.data_type())) { weights_offset = weights.quantization_info().offset()[filter_id]; } else { weights_offset = 0; } weights_scale = weights.quantization_info().scale()[filter_id]; } const int output_offset = oq_info.offset; const float output_scale = oq_info.scale; int output_multiplier = 0; int output_shift = 0; const float multiplier = input_scale * weights_scale / output_scale; arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); const int half_width_weights_start = width_weights / 2; const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start; const int half_height_weights_start = height_weights / 2; const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start; // Reset accumulator int32_t acc(0); // Compute a 2D convolution for each IFM and accumulate the result for(int ifm = 0; ifm < depth_in; ++ifm) { // Compute the offset for the input slice const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in; // Compute 2D convolution for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk) { for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk) { // Check if the pixel is out-of-bound if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in)) { const int idx = xk + half_width_weights_start; const int idy = yk + half_height_weights_start; const int32_t i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in]; const int32_t w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights]; acc += (i_value + input_offset) * (w_value + weights_offset); } } } } // Accumulate the bias acc += (*b_ptr); acc = validation::asymm_rounding_divide_by_pow2(validation::asymm_int_mult(acc, output_multiplier), output_shift); acc += output_offset; acc = utility::clamp(acc, 0, 255); // Store the result *out_ptr = acc; } } // namespace detail } // namespace convolution_3d } // namespace test } // namespace arm_compute #endif /*__ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H__ */