/* * Copyright (c) 2022-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_CLAMPFIXTURE_H #define ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_CLAMPFIXTURE_H #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h" #include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h" #include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h" #include "tests/framework/Fixture.h" #include "tests/validation/reference/ActivationLayer.h" using namespace arm_compute::experimental::dynamic_fusion; namespace arm_compute { namespace test { namespace validation { template class DynamicFusionClampValidationFixture : public framework::Fixture { public: void setup(TensorShape shape, ClampAttributes attributes, bool fuse, DataType data_type) { // CLAMP is implemented as LU_BOUNDED_RELU with the alpha and beta variables swapped. ActivationLayerInfo act_info{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, attributes.max_val(), attributes.min_val() }; _fuse = fuse; _attributes = attributes; _data_type = data_type; _target = compute_target(shape, attributes); _reference = compute_reference(shape, act_info); } protected: std::vector get_boundary_values(T min, T max) { // This function will return a vector filled with the following values that can // represent two partitions derived from equivalent partitioning. // * Lower partition: min, min + delta, lower quarter (nominal), center - delta // * Upper partition: center, center + delta, upper quarter (nominal), max - delta, max const auto delta = is_data_type_float(_data_type) ? T(0.1f) : T(1); const auto center_value = (min + max) / 2; const auto lower_quarter = (min + center_value) / 2; const auto upper_quarter = (center_value + max) / 2; std::vector boundary_values{}; // To ensure all the inserted values are within the given range after subtracing/adding delta auto insert_values = [&boundary_values, &min, &max](const std::initializer_list &new_values) { for(auto &v : new_values) { if(v >= min && v <= max) { boundary_values.emplace_back(v); } } }; insert_values({ min, static_cast(min + delta), static_cast(lower_quarter), static_cast(center_value - delta) }); // lower partition insert_values({ static_cast(center_value), static_cast(center_value + delta), static_cast(upper_quarter), static_cast(max - delta), max }); // upper partition return boundary_values; } template void fill(U &&tensor) { float min_bound = 0; float max_bound = 0; std::tie(min_bound, max_bound) = get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, _data_type); library->fill_static_values(tensor, get_boundary_values(static_cast(min_bound), static_cast(max_bound))); } TensorType compute_target(const TensorShape &shape, ClampAttributes attributes) { // Create a new workload sketch CLCompileContext cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); GpuWorkloadContext context{ &cl_compile_ctx }; GpuWorkloadSketch sketch{ &context }; // Create sketch tensors ITensorInfo* src_info = context.create_tensor_info(TensorInfo(shape, 1, _data_type)); ITensorInfo* dst_info = context.create_tensor_info(TensorInfo(shape, 1, _data_type)); ITensorInfo *ans_0_info = FunctionType::create_op(sketch, src_info, attributes); if(_fuse) { ITensorInfo *ans_1_info = FunctionType::create_op(sketch, ans_0_info, attributes); GpuOutput::create_op(sketch, ans_1_info, dst_info); } else { GpuOutput::create_op(sketch, ans_0_info, dst_info); } // Configure runtime ClWorkloadRuntime runtime; runtime.configure(sketch); // Construct user tensors TensorType t_src{}; TensorType t_dst{}; // Initialize user tensors t_src.allocator()->init(*src_info); t_dst.allocator()->init(*dst_info); // Allocate and fill user tensors t_src.allocator()->allocate(); t_dst.allocator()->allocate(); fill(AccessorType(t_src)); // Run runtime runtime.run({ &t_src, &t_dst }); return t_dst; } SimpleTensor compute_reference(const TensorShape &shape, ActivationLayerInfo act_info) { // Create reference SimpleTensor src{ shape, _data_type, 1, _quantization_info }; // Fill reference fill(src); auto dst = reference::activation_layer(src, act_info, _quantization_info); return dst; } protected: QuantizationInfo _quantization_info{}; ClampAttributes _attributes{}; bool _fuse{ false }; DataType _data_type{}; TensorType _target{}; SimpleTensor _reference{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif // ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_CLAMPFIXTURE_H