/* * Copyright (c) 2022-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_ELEMENTWISEBINARYFIXTURE_H #define ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_ELEMENTWISEBINARYFIXTURE_H #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h" #include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h" #include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h" #include "tests/framework/Fixture.h" #include "tests/framework/Macros.h" #include "tests/validation/reference/ElementwiseOperations.h" using namespace arm_compute::experimental::dynamic_fusion; namespace arm_compute { namespace test { namespace validation { template class DynamicFusionGpuElementwiseBinaryValidationGenericFixture : public framework::Fixture { public: void setup(ArithmeticOperation ref_op, const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2, DataType data_type, bool is_inplace, bool fuse_two_ops = false) { _ref_op = ref_op; _is_inplace = is_inplace; _data_type = data_type; _fuse = fuse_two_ops; ARM_COMPUTE_ERROR_ON_MSG(_fuse && shape2.total_size() == 0, "No shape2 provided for fusion of two ops."); ARM_COMPUTE_ERROR_ON_MSG(_fuse && _is_inplace, "In place for fusing case not supported yet."); _target = compute_target(shape0, shape1, shape2); _reference = compute_reference(shape0, shape1, shape2); } protected: template void fill(U &&tensor, int i) { if (is_data_type_float(tensor.data_type())) { switch (_ref_op) { case ArithmeticOperation::DIV: library->fill_tensor_uniform_ranged(tensor, i, {std::pair(-0.001f, 0.001f)}); break; case ArithmeticOperation::POWER: library->fill_tensor_uniform(tensor, i, 0.0f, 5.0f); break; default: library->fill_tensor_uniform(tensor, i); } } else if (tensor.data_type() == DataType::S32) { switch (_ref_op) { case ArithmeticOperation::DIV: library->fill_tensor_uniform_ranged(tensor, i, {std::pair(-1U, 1U)}); break; default: library->fill_tensor_uniform(tensor, i); } } else { library->fill_tensor_uniform(tensor, i); } } TensorType compute_target(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2) { // Create a new workload sketch auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); auto context = GpuWorkloadContext{&cl_compile_ctx}; GpuWorkloadSketch sketch{&context}; // Fuse first element wise binary Op ITensorInfo *lhs_info = context.create_tensor_info(TensorInfo(shape0, 1, _data_type)); ITensorInfo *rhs_info = context.create_tensor_info(TensorInfo(shape1, 1, _data_type)); ITensorInfo *dst_info = context.create_tensor_info(); ITensorInfo *rhs_info_fuse = nullptr; ITensorInfo *ans_info = FunctionType::create_op(sketch, lhs_info, rhs_info); if (_fuse) { rhs_info_fuse = context.create_tensor_info(TensorInfo(shape2, 1, _data_type)); ITensorInfo *ans2_info = FunctionType::create_op(sketch, ans_info, rhs_info_fuse); GpuOutput::create_op(sketch, ans2_info, dst_info); } else { GpuOutput::create_op(sketch, ans_info, dst_info); } // Configure runtime ClWorkloadRuntime runtime; runtime.configure(sketch); // (Important) Allocate auxiliary tensor memory if there are any for (auto &data : runtime.get_auxiliary_tensors()) { CLTensor *tensor = std::get<0>(data); TensorInfo info = std::get<1>(data); AuxMemoryInfo aux_mem_req = std::get<2>(data); tensor->allocator()->init(info, aux_mem_req.alignment); tensor->allocator()->allocate(); // Use ACL allocated memory } // Construct user tensors TensorType t_lhs{}; TensorType t_rhs{}; TensorType t_rhs_fuse{}; TensorType t_dst{}; // Initialize user tensors t_lhs.allocator()->init(*lhs_info); t_rhs.allocator()->init(*rhs_info); t_dst.allocator()->init(*dst_info); if (_fuse) { t_rhs_fuse.allocator()->init(*rhs_info_fuse); } // Allocate and fill user tensors // Instead of using ACL allocator, the user can choose to import memory into the tensors t_lhs.allocator()->allocate(); t_rhs.allocator()->allocate(); t_dst.allocator()->allocate(); if (_fuse) { t_rhs_fuse.allocator()->allocate(); } fill(AccessorType(t_lhs), 0); fill(AccessorType(t_rhs), 1); if (_fuse) { fill(AccessorType(t_rhs_fuse), 2); } // Run runtime if (_fuse) { runtime.run({&t_lhs, &t_rhs, &t_rhs_fuse, &t_dst}); } else { runtime.run({&t_lhs, &t_rhs, &t_dst}); } return t_dst; } SimpleTensor compute_reference(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2) { const TensorShape out_shape = TensorShape::broadcast_shape(shape0, shape1); const TensorShape out_shape_fuse = TensorShape::broadcast_shape(out_shape, shape1); // Create reference SimpleTensor ref_lhs{shape0, _data_type, 1, QuantizationInfo()}; SimpleTensor ref_rhs{shape1, _data_type, 1, QuantizationInfo()}; SimpleTensor ref_rhs_fuse{shape2, _data_type, 1, QuantizationInfo()}; SimpleTensor ref_dst{out_shape, _data_type, 1, QuantizationInfo()}; SimpleTensor ref_dst_fuse{out_shape_fuse, _data_type, 1, QuantizationInfo()}; // Fill reference fill(ref_lhs, 0); fill(ref_rhs, 1); reference::arithmetic_operation(_ref_op, ref_lhs, ref_rhs, ref_dst, ConvertPolicy::WRAP); if (_fuse) { fill(ref_rhs_fuse, 2); reference::arithmetic_operation(_ref_op, ref_dst, ref_rhs_fuse, ref_dst_fuse, ConvertPolicy::WRAP); } SimpleTensor *ret = _fuse ? &ref_dst_fuse : &ref_dst; return *ret; } ArithmeticOperation _ref_op{ArithmeticOperation::ADD}; TensorType _target{}; SimpleTensor _reference{}; DataType _data_type{}; DataLayout _data_layout{}; bool _is_inplace{false}; bool _fuse{false}; }; template class DynamicFusionGpuElementwiseBinaryOneOpValidationFixture : public DynamicFusionGpuElementwiseBinaryValidationGenericFixture { public: void setup(ArithmeticOperation ref_op, const TensorShape &shape0, DataType data_type, bool is_inplace) { DynamicFusionGpuElementwiseBinaryValidationGenericFixture::setup( ref_op, shape0, shape0, TensorShape(), data_type, is_inplace); } }; template class DynamicFusionGpuElementwiseBinaryBroadcastOneOpValidationFixture : public DynamicFusionGpuElementwiseBinaryValidationGenericFixture { public: void setup(ArithmeticOperation ref_op, const TensorShape &shape0, const TensorShape &shape1, DataType data_type, bool is_inplace) { DynamicFusionGpuElementwiseBinaryValidationGenericFixture::setup( ref_op, shape0, shape1, TensorShape(), data_type, is_inplace); } }; template class DynamicFusionGpuElementwiseBinaryTwoOpsValidationFixture : public DynamicFusionGpuElementwiseBinaryValidationGenericFixture { public: void setup(ArithmeticOperation ref_op, const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2, DataType data_type, bool is_inplace, bool fuse_two_ops) { DynamicFusionGpuElementwiseBinaryValidationGenericFixture::setup( ref_op, shape0, shape1, shape2, data_type, is_inplace, fuse_two_ops); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif // ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_ELEMENTWISEBINARYFIXTURE_H