/* * Copyright (c) 2017-2018 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_UNIT_MEMORY_MANAGER #define ARM_COMPUTE_TEST_UNIT_MEMORY_MANAGER #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/runtime/BlobLifetimeManager.h" #include "arm_compute/runtime/MemoryManagerOnDemand.h" #include "arm_compute/runtime/PoolManager.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/FullyConnectedLayer.h" #include "tests/validation/reference/SoftmaxLayer.h" namespace arm_compute { namespace test { namespace validation { /** Simple test case to run two fully connected layers using a blob affinity memory manager * * Runs two fully connected layers back to back */ template class BlobMemoryManagerSimpleTestCaseFixture : public framework::Fixture { using T = float; public: void setup() { _target = compute_target(); _reference = compute_reference(); }; protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(0.5f, 1.f); library->fill(tensor, distribution, i); } TensorType compute_target() { auto lifetime_mgr = std::make_shared(); auto pool_mgr = std::make_shared(); auto mm = std::make_shared(lifetime_mgr, pool_mgr); // Create tensors TensorType w1 = create_tensor(TensorShape(128U, 128U), DataType::F32, 1); TensorType b1 = create_tensor(TensorShape(128U), DataType::F32, 1); TensorType w2 = create_tensor(TensorShape(128U, 24U), DataType::F32, 1); TensorType b2 = create_tensor(TensorShape(24U), DataType::F32, 1); TensorType src = create_tensor(TensorShape(128U), DataType::F32, 1); TensorType fc1 = create_tensor(TensorShape(128U), DataType::F32, 1); TensorType dst = create_tensor(TensorShape(24U), DataType::F32, 1); // Create and configure function FullyConnectedFunction fc_layer_1(mm); FullyConnectedFunction fc_layer_2(mm); fc_layer_1.configure(&src, &w1, &b1, &fc1); fc_layer_2.configure(&fc1, &w2, &b2, &dst); // Allocate tensors w1.allocator()->allocate(); b1.allocator()->allocate(); w2.allocator()->allocate(); b2.allocator()->allocate(); src.allocator()->allocate(); fc1.allocator()->allocate(); dst.allocator()->allocate(); // Finalize memory manager mm->populate(_allocator, 1 /* num_pools */); ARM_COMPUTE_EXPECT(mm->lifetime_manager()->are_all_finalized(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(mm->pool_manager()->num_pools() == 1, framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(src), 0); fill(AccessorType(w1), 1); fill(AccessorType(b1), 2); fill(AccessorType(w2), 3); fill(AccessorType(b2), 4); // Compute functions fc_layer_1.run(); fc_layer_2.run(); return dst; } SimpleTensor compute_reference() { // Create reference SimpleTensor w1{ TensorShape(128U, 128U), DataType::F32 }; SimpleTensor b1{ TensorShape(128U), DataType::F32 }; SimpleTensor w2{ TensorShape(128U, 24U), DataType::F32 }; SimpleTensor b2{ TensorShape(24U), DataType::F32 }; SimpleTensor src{ TensorShape(128U), DataType::F32 }; // Fill reference fill(src, 0); fill(w1, 1); fill(b1, 2); fill(w2, 3); fill(b2, 4); auto fc1 = reference::fully_connected_layer(src, w1, b1, TensorShape(128U)); return reference::fully_connected_layer(fc1, w2, b2, TensorShape(24U)); } protected: TensorType _target{}; SimpleTensor _reference{}; AllocatorType _allocator{}; }; /** Test case to run two fully connected layers using a blob affinity memory manager, * reconfigure with different shapes and rerun * * Runs two fully connected layers back to back then reconfigures with different batch size and reruns * Shapes of the reconfigure step are smaller that the initial configured step */ template class BlobMemoryManagerReconfigureTestCaseFixture : public framework::Fixture { using T = float; public: void setup() { _max_batches = 8; _cur_batches = 6; _target = compute_target(); _reference = compute_reference(); }; protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(0.5f, 1.f); library->fill(tensor, distribution, i); } TensorType compute_target() { AllocatorType allocator{}; auto lifetime_mgr = std::make_shared(); auto pool_mgr = std::make_shared(); auto mm = std::make_shared(lifetime_mgr, pool_mgr); // Create tensors TensorType w1 = create_tensor(TensorShape(128U, 128U), DataType::F32, 1); TensorType b1 = create_tensor(TensorShape(128U), DataType::F32, 1); TensorType w2 = create_tensor(TensorShape(128U, 24U), DataType::F32, 1); TensorType b2 = create_tensor(TensorShape(24U), DataType::F32, 1); TensorType src = create_tensor(TensorShape(128U, _max_batches), DataType::F32, 1); TensorType fc1 = create_tensor(TensorShape(128U, _max_batches), DataType::F32, 1); TensorType dst = create_tensor(TensorShape(24U, _max_batches), DataType::F32, 1); // Create and configure function FullyConnectedFunction fc_layer_1(mm); FullyConnectedFunction fc_layer_2(mm); fc_layer_1.configure(&src, &w1, &b1, &fc1); fc_layer_2.configure(&fc1, &w2, &b2, &dst); // Allocate persistent tensors w1.allocator()->allocate(); b1.allocator()->allocate(); w2.allocator()->allocate(); b2.allocator()->allocate(); // Allocate tensors (1st iteration) src.allocator()->allocate(); fc1.allocator()->allocate(); dst.allocator()->allocate(); // Finalize memory manager mm->populate(_allocator, 1 /* num_pools */); ARM_COMPUTE_EXPECT(mm->lifetime_manager()->are_all_finalized(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(mm->pool_manager()->num_pools() == 1, framework::LogLevel::ERRORS); // Fill tensors (1st iteration) fill(AccessorType(src), 0); fill(AccessorType(w1), 1); fill(AccessorType(b1), 2); fill(AccessorType(w2), 3); fill(AccessorType(b2), 4); // Compute functions (1st iteration) fc_layer_1.run(); fc_layer_2.run(); // Update tensor shapes (2nd iteration) auto src_padding = src.allocator()->info().padding(); auto fc1_padding = fc1.allocator()->info().padding(); auto dst_padding = dst.allocator()->info().padding(); int diff = _max_batches - _cur_batches; auto new_src_padding = PaddingSize(src_padding.top, src_padding.right, src_padding.bottom + diff, src_padding.left); auto new_fc1_padding = PaddingSize(fc1_padding.top, fc1_padding.right, fc1_padding.bottom + diff, fc1_padding.left); auto new_dst_padding = PaddingSize(dst_padding.top, dst_padding.right, dst_padding.bottom + diff, dst_padding.left); src.allocator()->info().set_tensor_shape(TensorShape(128U, _cur_batches)).set_is_resizable(true).extend_padding(new_src_padding); src.allocator()->info().set_is_resizable(false); fc1.allocator()->info().set_tensor_shape(TensorShape(128U, _cur_batches)).set_is_resizable(true).extend_padding(new_fc1_padding); fc1.allocator()->info().set_is_resizable(false); dst.allocator()->info().set_tensor_shape(TensorShape(24U, _cur_batches)).set_is_resizable(true).extend_padding(new_dst_padding); dst.allocator()->info().set_is_resizable(false); // Configure FC info FullyConnectedLayerInfo fc_info; fc_info.retain_internal_weights = true; // Configure functions (2nd iteration) fc_layer_1.configure(&src, &w1, &b1, &fc1, fc_info); fc_layer_2.configure(&fc1, &w2, &b2, &dst, fc_info); // Fill tensors (2nd iteration) fill(AccessorType(src), 5); // Compute functions (2nd iteration) fc_layer_1.run(); fc_layer_2.run(); return dst; } SimpleTensor compute_reference() { // Create reference SimpleTensor w1{ TensorShape(128U, 128U), DataType::F32 }; SimpleTensor b1{ TensorShape(128U), DataType::F32 }; SimpleTensor w2{ TensorShape(128U, 24U), DataType::F32 }; SimpleTensor b2{ TensorShape(24U), DataType::F32 }; SimpleTensor src{ TensorShape(128U, _cur_batches), DataType::F32 }; // Fill reference fill(src, 5); fill(w1, 1); fill(b1, 2); fill(w2, 3); fill(b2, 4); auto fc1 = reference::fully_connected_layer(src, w1, b1, TensorShape(128U, _cur_batches)); return reference::fully_connected_layer(fc1, w2, b2, TensorShape(24U, _cur_batches)); } protected: TensorType _target{}; SimpleTensor _reference{}; AllocatorType _allocator{}; unsigned int _max_batches{}; unsigned int _cur_batches{}; }; /** Test case to run a fully connected layer followed by a softmax layer using a blob affinity memory manager, * reconfigure with different shapes and rerun * * Runs a fully connected convolution layer followed by a softmax layer then reconfigures with different batch size and reruns * Shapes of the reconfigure step are smaller that the initial configured step */ template class BlobMemoryManagerReconfigure2TestCaseFixture : public framework::Fixture { using T = float; public: void setup() { _max_batches = 30; _cur_batches = 3; _target = compute_target(); _reference = compute_reference(); }; protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(0.5f, 1.f); library->fill(tensor, distribution, i); } TensorType compute_target() { AllocatorType allocator{}; auto lifetime_mgr = std::make_shared(); auto pool_mgr = std::make_shared(); auto mm = std::make_shared(lifetime_mgr, pool_mgr); // Create tensors TensorType w = create_tensor(TensorShape(112U, 8U), DataType::F32, 1); TensorType b = create_tensor(TensorShape(8U), DataType::F32, 1); TensorType src = create_tensor(TensorShape(1U, 1U, 112U, _max_batches), DataType::F32, 1); TensorType fc = create_tensor(TensorShape(8U, _max_batches), DataType::F32, 1); TensorType dst = create_tensor(TensorShape(8U, _max_batches), DataType::F32, 1); // Create and configure function FullyConnectedFunction fc_layer(mm); SoftmaxFunction smx_layer(mm); fc_layer.configure(&src, &w, &b, &fc); smx_layer.configure(&fc, &dst); // Allocate persistent tensors w.allocator()->allocate(); b.allocator()->allocate(); // Allocate tensors (1st iteration) src.allocator()->allocate(); fc.allocator()->allocate(); dst.allocator()->allocate(); // Finalize memory manager mm->populate(_allocator, 1 /* num_pools */); ARM_COMPUTE_EXPECT(mm->lifetime_manager()->are_all_finalized(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(mm->pool_manager()->num_pools() == 1, framework::LogLevel::ERRORS); // Fill tensors (1st iteration) fill(AccessorType(src), 0); fill(AccessorType(w), 1); fill(AccessorType(b), 2); // Compute functions (1st iteration) fc_layer.run(); smx_layer.run(); // Get padding requirements auto fc_padding = fc.allocator()->info().padding(); // Configure FC info FullyConnectedLayerInfo fc_info; fc_info.retain_internal_weights = true; // Run rest iterations for(int i = _max_batches; i >= static_cast(_cur_batches); --i) { int diff = _max_batches - i; auto new_fc_padding = PaddingSize(fc_padding.top, fc_padding.right, fc_padding.bottom + diff, fc_padding.left); src.allocator()->info().set_tensor_shape(TensorShape(1U, 1U, 112U, i)); fc.allocator()->info().set_tensor_shape(TensorShape(8U, i)).set_is_resizable(true).extend_padding(new_fc_padding); fc.allocator()->info().set_is_resizable(false); dst.allocator()->info().set_tensor_shape(TensorShape(8U, i)); // Configure functions fc_layer.configure(&src, &w, &b, &fc, fc_info); smx_layer.configure(&fc, &dst); // Fill tensors fill(AccessorType(src), 3); // Compute functions fc_layer.run(); smx_layer.run(); } return dst; } SimpleTensor compute_reference() { // Create reference SimpleTensor w{ TensorShape(112U, 8U), DataType::F32 }; SimpleTensor b{ TensorShape(8U), DataType::F32 }; SimpleTensor src{ TensorShape(1U, 1U, 112U, _cur_batches), DataType::F32 }; // Fill reference fill(src, 3); fill(w, 1); fill(b, 2); auto fc = reference::fully_connected_layer(src, w, b, TensorShape(8U, _cur_batches)); return reference::softmax_layer(fc, 1.f); } protected: TensorType _target{}; SimpleTensor _reference{}; AllocatorType _allocator{}; unsigned int _max_batches{}; unsigned int _cur_batches{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_UNIT_MEMORY_MANAGER */