/* * Copyright (c) 2023-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H #define ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "src/core/utils/quantization/AsymmHelpers.h" #include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT #include "tests/framework/Fixture.h" #include "tests/validation/reference/ActivationLayer.h" #include "tests/validation/reference/GEMM.h" #include "tests/validation/reference/GEMMLowp.h" #include "tests/validation/reference/Permute.h" #include "tests/validation/reference/ReshapeLayer.h" #include "tests/validation/Validation.h" #include #include #include namespace arm_compute { namespace test { namespace validation { template class MatMulGenericValidationFixture : public framework::Fixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, Settings settings, QuantizationInfo a_qinfo = QuantizationInfo(), QuantizationInfo b_qinfo = QuantizationInfo(), QuantizationInfo o_qinfo = QuantizationInfo()) { // For brevity, the input shapes are assumed to be not-transposed for both a and b matrices. if (transpose_a) { permute(shape_a, PermutationVector(1U, 0U)); } if (transpose_b) { permute(shape_b, PermutationVector(1U, 0U)); } _target = compute_target(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo); _reference = compute_reference(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, a_qinfo, b_qinfo, o_qinfo); } protected: template void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f) { switch (tensor.data_type()) { case DataType::BFLOAT16: { arm_compute::utils::uniform_real_distribution_16bit distribution{float(lo), float(hi)}; library->fill(tensor, distribution, i); break; } case DataType::F16: { arm_compute::utils::uniform_real_distribution_16bit distribution{float(lo), float(hi)}; library->fill(tensor, distribution, i); break; } case DataType::F32: { std::uniform_real_distribution distribution(lo, hi); library->fill(tensor, distribution, i); break; } case DataType::QASYMM8: case DataType::QASYMM8_SIGNED: { library->fill_tensor_uniform(tensor, i); break; } default: { ARM_COMPUTE_ERROR("Unsupported data type."); } } } virtual TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, const Settings &settings, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { // 1. Create Classes and configure function // ---------------------------------------------------- // Create tensors // Configure relevant classes and matmul function TensorType a = create_tensor(shape_a, data_type, 1, a_qinfo); TensorType b = create_tensor(shape_b, data_type, 1, b_qinfo); TensorType dst = create_tensor(output_shape, data_type, 1, o_qinfo); FunctionType matmul; // Configure MatMulInfo class MatMulInfo mm_info; mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b); // Ensure values are dynamic a.info()->set_are_values_constant(false); b.info()->set_are_values_constant(false); // Configure operator matmul.configure(&a, &b, &dst, mm_info, settings, act_info); // Assertions ARM_COMPUTE_ASSERT(a.info()->is_resizable()); ARM_COMPUTE_ASSERT(b.info()->is_resizable()); ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_ASSERT(!a.info()->is_resizable()); ARM_COMPUTE_ASSERT(!b.info()->is_resizable()); ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); // For multiple runs. for (int i = 0; i < num_extra_runs; i++) { // Stress dynamic tensors by running multiple times. // -------------------------------------------------------- // Fill tensors with new seed // Run function const int seed_offset = num_extra_runs * 100; fill(AccessorType(a), seed_offset); fill(AccessorType(b), seed_offset + 1); matmul.run(); } // 2. Final Run for reference comparison // -------------------------------------------------------- // Re-fill tensors same seed as reference run // Compute MatMul operation fill(AccessorType(a), 2); fill(AccessorType(b), 3); matmul.run(); return dst; } template typename std::enable_if < !std::is_integral::value, SimpleTensor>::type compute_reference_gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, const QuantizationInfo &o_qinfo) { ARM_COMPUTE_UNUSED(o_qinfo); return reference::gemm(a, b, c, alpha, beta); } template typename std::enable_if::value, SimpleTensor>::type compute_reference_gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, const QuantizationInfo &o_qinfo) { ARM_COMPUTE_UNUSED(alpha, beta); const auto aq = a.quantization_info().uniform(); const auto bq = b.quantization_info().uniform(); const auto oq = o_qinfo.uniform(); const auto multiplier = aq.scale * bq.scale / oq.scale; int32_t output_multiplier = 0; int32_t output_shift = 0; quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift); std::vector output_multipliers{output_multiplier}; std::vector output_shifts{output_shift}; //The lhs and rhs offsets are negated here to keep the reference aligned with the function implementation where the lhs and rhs offsets are also negated. const auto tmp = reference::gemmlowp_matrix_multiply_core(a, b, c.shape(), -aq.offset, -bq.offset); auto output = reference::gemmlowp_quantize_down_scale_by_fixedpoint( tmp, output_multipliers, output_shifts, oq.offset, std::numeric_limits::lowest(), std::numeric_limits::max()); output.quantization_info(o_qinfo); return output; } SimpleTensor compute_reference(const TensorShape &a_shape, const TensorShape &b_shape, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { // We collapse dimensions > 2 onto dimension 2, i.e. 4D+ tensors will look like 3D // This is necessary unless we choose to extend gemm reference for 4D+ tensors TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ); TensorShape a_shape_collapsed = a_shape.collapsed_from(Window::DimZ); TensorShape b_shape_collapsed = b_shape.collapsed_from(Window::DimZ); // Create reference SimpleTensor a{a_shape_collapsed, data_type, 1, a_qinfo}; SimpleTensor b{b_shape_collapsed, data_type, 1, b_qinfo}; SimpleTensor c{output_shape_collapsed, data_type, 1}; // Fill reference fill(a, 2); fill(b, 3); /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if transpose_a is set to true, then A is assumed to be (B x K x M), therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K) in order to be able to call reference implementation that works with (B x M x K) input. Similarly, if transpose_b is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */ // Define transposed shapes TensorShape a_transposed_shape(a.shape()); a_transposed_shape.set(0, a.shape().y()); a_transposed_shape.set(1, a.shape().x()); TensorShape b_transposed_shape(b.shape()); b_transposed_shape.set(0, b.shape().y()); b_transposed_shape.set(1, b.shape().x()); // Define transposed tensors SimpleTensor a_transposed{a_transposed_shape, data_type}; SimpleTensor b_transposed{b_transposed_shape, data_type}; // pretranspose a if necessary if (transpose_a) { a_transposed = reference::permute(a, PermutationVector(1U, 0U)); } // pretranspose b if necessary if (transpose_b) { b_transposed = reference::permute(b, PermutationVector(1U, 0U)); } // Setting beta to 0 will effectively disable C for the // computation of the reference: alpha * A * B + 0 * C // Use transposed tensors if boolean enabled else use original tensors auto result = compute_reference_gemm((transpose_a) ? a_transposed : a, (transpose_b) ? b_transposed : b, c, 1.0f, 0.f, o_qinfo); result = reference::activation_layer(result, act_info, o_qinfo); // We reshape the gemm output back if the tensor is high dimensional if (output_shape_collapsed != output_shape) { result = reference::reshape_layer(result, output_shape); } return result; } TensorType _target{}; SimpleTensor _reference{}; }; /// TODO: (ONCPUML-1451) The current state of this fixture is interim and a longer-term testing method will be implemented later. /// @note: Currently we support only a 2x2 test due to the lack of reorder ref. implementation. template class MatMulFixedFormatFixture : public MatMulGenericValidationFixture { public: TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, const Settings &settings, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) override { // 1. Create Classes and configure function // ---------------------------------------------------- // Create tensors // Configure relevant classes and matmul function TensorType a = create_tensor(shape_a, data_type, 1, a_qinfo); TensorType b = create_tensor(shape_b, data_type, 1, b_qinfo); TensorType dst = create_tensor(output_shape, data_type, 1, o_qinfo); const auto weight_tensor_info = TensorInfo(*b.info()); const TensorInfo new_tensor_info = prepare_weights(weight_tensor_info); TensorType weights_transformed = create_tensor(new_tensor_info); // Configure MatMulInfo class MatMulInfo mm_info; mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b); // Ensure values are dynamic a.info()->set_are_values_constant(false); b.info()->set_are_values_constant(false); weights_transformed.info()->set_are_values_constant(false); FunctionType matmul; // Configure operator matmul.configure(&a, &weights_transformed, &dst, mm_info, settings, act_info); // Assertions ARM_COMPUTE_ASSERT(a.info()->is_resizable()); ARM_COMPUTE_ASSERT(b.info()->is_resizable()); ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); ARM_COMPUTE_ASSERT(weights_transformed.info()->is_resizable()); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); dst.allocator()->allocate(); weights_transformed.allocator()->allocate(); ARM_COMPUTE_ASSERT(!a.info()->is_resizable()); ARM_COMPUTE_ASSERT(!b.info()->is_resizable()); ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); ARM_COMPUTE_ASSERT(!weights_transformed.info()->is_resizable()); // For multiple runs. for (int i = 0; i < num_extra_runs; i++) { // Stress dynamic tensors by running multiple times. // -------------------------------------------------------- // Fill tensors with new seed // Run function const int seed_offset = num_extra_runs * 100; this->fill(AccessorType(a), seed_offset); this->fill(AccessorType(b), seed_offset + 1); matmul.run(); } // 2. Final Run for reference comparison // -------------------------------------------------------- // Re-fill tensors same seed as reference run // Compute MatMul operation this->fill(AccessorType(a), 2); this->fill(AccessorType(b), 3); rearrange_data(AccessorType(b), AccessorType(weights_transformed)); matmul.run(); return dst; } void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, Settings settings, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { if (CPUInfo::get().has_bf16()) { MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo); } } private: TensorInfo prepare_weights(const TensorInfo tensor_info) { const DataLayout data_layout = tensor_info.data_layout(); ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS); const DataType data_type = tensor_info.data_type(); const TensorShape tensor_shape = tensor_info.tensor_shape(); const int H = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)]; const int W = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)]; ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS); arm_compute::Strides strides_in_bytes = tensor_info.strides_in_bytes(); strides_in_bytes.set(1, 32); strides_in_bytes.set(2, 32); const size_t offset_first_element_in_bytes = tensor_info.offset_first_element_in_bytes(); const size_t total_size_in_bytes = 32; const TensorShape TS(H, W); TensorInfo new_tensor_info = tensor_info; new_tensor_info.init(TS, tensor_info.num_channels(), data_type, strides_in_bytes, offset_first_element_in_bytes, total_size_in_bytes); return new_tensor_info; } void rearrange_data(const AccessorType src, AccessorType dst) { const TensorShape src_tensor_shape = src.shape(); const DataLayout data_layout = src.data_layout(); ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS); const unsigned int O = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES)]; // N=O const unsigned int H = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)]; const unsigned int W = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)]; const unsigned int I = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)]; // C=I ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(I == 1 && O == 1, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(src.num_elements() <= dst.num_elements(), framework::LogLevel::ERRORS); const T *src_ptr = reinterpret_cast(src.data()); T *dst_ptr = reinterpret_cast(dst.data()); // rearrange indexes for 2x2 input and weight int dst_idx[] = {0, 4, 1, 5}; for (int i = 0; i < 4; i++) { dst_ptr[dst_idx[i]] = src_ptr[i]; } } }; template class MatMulValidationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type) { MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, ActivationLayerInfo(), 0, Settings()); } }; template class MatMulValidationWithDynamicTensorsFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs) { MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings()); } }; template class QuantizedMatMulValidationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(), a_qinfo, b_qinfo, o_qinfo); } }; template class MatMulValidationWithActivationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info) { MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings()); } }; template class MatMulValidationWithActivationAlphaBetaFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo::ActivationFunction function, float alpha_beta) { ActivationLayerInfo act_info(function, alpha_beta, alpha_beta); MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings()); } }; template class QuantizedMatMulValidationWithActivationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo::ActivationFunction function, float alpha_beta, int num_extra_runs, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { ActivationLayerInfo act_info(function, alpha_beta, alpha_beta); MatMulGenericValidationFixture::setup( shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(), a_qinfo, b_qinfo, o_qinfo); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H