/* * Copyright (c) 2017-2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE #define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE #include "arm_compute/core/KernelDescriptors.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/GEMMLowp.h" #include namespace arm_compute { namespace test { namespace validation { namespace { template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QSYMM8_PER_CHANNEL: { int min_bound = 128; int max_bound = -127; for(size_t j = 0; j < tensor.quantization_info().scale().size(); j++) { std::pair bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i); if(bounds.first < min_bound) { min_bound = bounds.first; } if(bounds.second > max_bound) { max_bound = bounds.second; } } std::uniform_int_distribution distribution(min_bound, max_bound); library->fill(tensor, distribution, i); break; } case DataType::QASYMM8: { std::uniform_int_distribution distribution(1, 254); library->fill(tensor, distribution, i); break; } case DataType::F16: case DataType::F32: { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } template TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo(), DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, QuantizationInfo b_qinfo = QuantizationInfo()) { // Create tensors DataType data_type_output = output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : data_type_a; TensorType a = create_tensor(shape_a, data_type_a, 1); TensorType b = create_tensor(shape_b, data_type_b, 1); // gemm output before output stage mismatch if i pass data_layout_output here. to be investigated TensorType output = create_tensor(shape_output, data_type_output, 1); a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset)); if(data_type_b == DataType::QSYMM8_PER_CHANNEL) { b.info()->set_quantization_info(b_qinfo); } else { b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset)); } TensorType bias; if(is_fused) { TensorShape bias_shape(shape_b[0]); bias = create_tensor(bias_shape, DataType::S32, 1); } // Create and configure function // The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output FunctionType gemmlowp; // TODO (COMPMID-1672) - Extending the test to validate add bias in offset contribution gemmlowp.configure(&a, &b, is_fused ? &bias : nullptr, &output, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_output[2] : 0), reinterpret_input_as_3d, false, output_stage)); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(output.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); output.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!output.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(a), 0); fill(AccessorType(b), 1); if(is_fused) { ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS); bias.allocator()->allocate(); ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS); fill(AccessorType(bias), 2); } // Compute GEMM function gemmlowp.run(); return output; } template SimpleTensor compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, QuantizationInfo b_qinfo = QuantizationInfo()) { TensorShape shape_a_to_use = shape_a; if(reinterpret_input_as_3d) { // Collapse the second and third dimension if the input is 3D shape_a_to_use.collapse(2U, 1U); } // Create reference SimpleTensor a{ shape_a_to_use, data_type_a, 1 }; SimpleTensor b{ shape_b, data_type_b, 1, data_type_b == DataType::QSYMM8_PER_CHANNEL ? b_qinfo : QuantizationInfo(1.0f / 255, b_offset) }; // Fill reference fill(a, 0); fill(b, 1); return reference::gemmlowp_matrix_multiply_core(a, b, shape_output, a_offset, b_offset); } } template class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset) { _target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset); _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset); } protected: TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset) { return compute_gemmlowp_target(shape_a, shape_b, shape_output, a_offset, b_offset); } SimpleTensor compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset) { return compute_gemmlowp_reference(shape_a, shape_b, shape_output, a_offset, b_offset); } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_b) { ARM_COMPUTE_EXPECT(output_stage.type != GEMMLowpOutputStageType::NONE, framework::LogLevel::ERRORS); DataType data_type_a = data_type_b == DataType::QASYMM8_SIGNED ? DataType::QASYMM8_SIGNED : DataType::QASYMM8; if(data_type_b == DataType::QSYMM8_PER_CHANNEL) { output_stage.is_quantized_per_channel = true; const size_t num_channels = shape_b[0]; std::vector scales(num_channels); std::uniform_real_distribution<> distribution(0, 1); library->fill(scales, distribution, 0); output_stage.gemmlowp_multipliers.resize(num_channels); output_stage.gemmlowp_shifts.resize(num_channels); for(size_t i = 0; i < num_channels; ++i) { quantization::calculate_quantized_multiplier(scales[i], &output_stage.gemmlowp_multipliers[i], &output_stage.gemmlowp_shifts[i]); } _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales)); _target = compute_target(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales)); } else { _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo()); _target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo()); } } protected: TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo) { return compute_gemmlowp_target(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, b_qinfo); } SimpleTensor compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo) { SimpleTensor output = compute_gemmlowp_reference(shape_a, shape_b, shape_output, a_offset, b_offset, data_type_a, data_type_b, b_qinfo); TensorShape bias_shape(shape_b[0]); SimpleTensor bias{ bias_shape, DataType::S32, 1 }; fill(bias, 2); switch(output_stage.type) { case GEMMLowpOutputStageType::QUANTIZE_DOWN: return reference::gemmlowp_quantize_down_scale(output, bias, output_stage.gemmlowp_offset, output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound); break; case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT: return reference::gemmlowp_quantize_down_scale_by_fixedpoint(output, bias, output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_offset, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound); break; default: ARM_COMPUTE_ERROR("Not Supported!"); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias); _reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QASYMM8, 1); // Create and configure function FunctionType output_stage; GEMMLowpOutputStageInfo output_stage_info = GEMMLowpOutputStageInfo(); output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN; output_stage_info.gemmlowp_offset = result_offset; output_stage_info.gemmlowp_multiplier = result_mult_int; output_stage_info.gemmlowp_shift = result_shift; output_stage_info.gemmlowp_min_bound = min; output_stage_info.gemmlowp_max_bound = max; output_stage_info.output_data_type = DataType::QASYMM8; output_stage.configure(&a, add_bias ? &b : nullptr, &c, output_stage_info); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); const std::vector result_mult_int_vec = { result_mult_int }; const std::vector result_shift_vec = { result_shift }; if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_scale(a, b, result_offset, result_mult_int_vec, result_shift_vec, min, max); } else { return reference::gemmlowp_quantize_down_scale(a, result_offset, result_mult_int_vec, result_shift_vec, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToInt8ScaleValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias); _reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QASYMM8_SIGNED, 1); // Create and configure function FunctionType output_stage; GEMMLowpOutputStageInfo output_stage_info = GEMMLowpOutputStageInfo(); output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN; output_stage_info.gemmlowp_offset = result_offset; output_stage_info.gemmlowp_multiplier = result_mult_int; output_stage_info.gemmlowp_shift = result_shift; output_stage_info.gemmlowp_min_bound = min; output_stage_info.gemmlowp_max_bound = max; output_stage_info.output_data_type = DataType::QASYMM8_SIGNED; output_stage.configure(&a, add_bias ? &b : nullptr, &c, output_stage_info); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); const std::vector result_mult_int_vec = { result_mult_int }; const std::vector result_shift_vec = { result_shift }; if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_scale(a, b, result_offset, result_mult_int_vec, result_shift_vec, min, max); } else { return reference::gemmlowp_quantize_down_scale(a, result_offset, result_mult_int_vec, result_shift_vec, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias); _reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QASYMM8_SIGNED, 1); // Create and configure function FunctionType output_stage; output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); const std::vector result_fixed_point_multiplier_vec = { result_fixed_point_multiplier }; const std::vector result_shift_vec = { result_shift }; if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_scale_by_fixedpoint(a, b, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max); } else { return reference::gemmlowp_quantize_down_scale_by_fixedpoint(a, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias); _reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QASYMM8, 1); // Create and configure function FunctionType output_stage; output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); const std::vector result_fixed_point_multiplier_vec = { result_fixed_point_multiplier }; const std::vector result_shift_vec = { result_shift }; if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_scale_by_fixedpoint(a, b, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max); } else { return reference::gemmlowp_quantize_down_scale_by_fixedpoint(a, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ScaleByFloatValidationFixture : public framework::Fixture { public: template void setup(DataType data_type, TensorShape shape, float result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias) { _target = compute_target(data_type, shape, result_real_multiplier, result_offset, min, max, add_bias); _reference = compute_reference(shape, result_real_multiplier, result_offset, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { // To avoid data all being clampped std::uniform_int_distribution<> distribution(-500, 500); library->fill(tensor, distribution, i); } TensorType compute_target(DataType data_type, const TensorShape &shape, float result_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, data_type, 1); // create output stage info GEMMLowpOutputStageInfo info; info.gemmlowp_max_bound = max; info.gemmlowp_min_bound = min; info.gemmlowp_real_multiplier = result_multiplier; info.gemmlowp_offset = result_offset; info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT; info.output_data_type = data_type; // Create and configure function FunctionType output_stage; output_stage.configure(&a, add_bias ? &b : nullptr, &c, info); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, float_t result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); const std::vector result_float_multiplier_vec = { result_real_multiplier }; if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_scale_by_float(a, b, result_float_multiplier_vec, result_offset, min, max); } else { return reference::gemmlowp_quantize_down_scale_by_float(a, result_float_multiplier_vec, result_offset, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_fixedpoint_multiplier, result_shift, min, max, add_bias); _reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QSYMM16, 1); // Create and configure function FunctionType output_stage; output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, min, max); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); const std::vector result_fixed_point_multiplier_vec = { result_fixed_point_multiplier }; const std::vector result_shift_vec = { result_shift }; if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_scale_by_fixedpoint(a, b, result_fixed_point_multiplier_vec, result_shift_vec, 0, min, max); } else { return reference::gemmlowp_quantize_down_scale_by_fixedpoint(a, result_fixed_point_multiplier_vec, result_shift_vec, 0, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyReshapedValidationFixture : public framework::Fixture { public: template void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs, bool interleave_rhs, DataType data_type) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; lhs_info.v0 = v0; lhs_info.interleave = interleave_lhs; lhs_info.transpose = false; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = true; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type); _reference = compute_reference(lhs_shape, rhs_shape, data_type); } protected: template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } break; case DataType::QASYMM8_SIGNED: { std::uniform_int_distribution<> distribution(-127, 126); library->fill(tensor, distribution, i); } break; default: ARM_COMPUTE_ERROR("Unsupported data type"); } } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType lhs_reshaped; TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeLHSFunctionType reshape_lhs; ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info); reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); lhs_reshaped.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_lhs.run(); reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type) { TensorShape dst_shape = lhs_shape; dst_shape[0] = rhs_shape[0]; dst_shape[1] = lhs_shape[1]; switch(data_type) { case DataType::QASYMM8: { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } case DataType::QASYMM8_SIGNED: { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } default: ARM_COMPUTE_ERROR("Unsupported data type"); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture { public: template void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs, bool interleave_rhs, DataType data_type) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; lhs_info.v0 = v0; lhs_info.interleave = interleave_lhs; lhs_info.transpose = false; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = true; // In case of GEMM3D, m is the product between m_w and m_h const unsigned int m = m_w * m_h; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h, data_type); _reference = compute_reference(lhs_shape, rhs_shape, m_h, data_type); } protected: template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } break; case DataType::QASYMM8_SIGNED: { std::uniform_int_distribution<> distribution(-127, 126); library->fill(tensor, distribution, i); } break; default: ARM_COMPUTE_ERROR("Unsupported data type"); } } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h, DataType data_type) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType lhs_reshaped; TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeLHSFunctionType reshape_lhs; ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info); reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); lhs_reshaped.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_lhs.run(); reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h, DataType data_type) { TensorShape dst_shape = lhs_shape; dst_shape.set(0, rhs_shape[0]); dst_shape.set(1, lhs_shape[1] / m_h); dst_shape.set(2, m_h); dst_shape.set(3, lhs_shape[2]); switch(data_type) { case DataType::QASYMM8: { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } case DataType::QASYMM8_SIGNED: { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } default: ARM_COMPUTE_ERROR("Unsupported data type"); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyReshapedOnlyRHSValidationFixture : public framework::Fixture { public: template void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = transpose_rhs; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type); _reference = compute_reference(lhs_shape, rhs_shape, data_type); } protected: template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } break; case DataType::QASYMM8_SIGNED: { std::uniform_int_distribution<> distribution(-127, 126); library->fill(tensor, distribution, i); } break; default: ARM_COMPUTE_ERROR("Unsupported data type"); } } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; GEMMKernelInfo gemm_info; gemm_info.m = M; gemm_info.n = N; gemm_info.k = K; gemm_info.lhs_info = lhs_info; gemm_info.rhs_info = rhs_info; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs, &rhs_reshaped, &dst, gemm_info); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type) { TensorShape dst_shape = lhs_shape; dst_shape[0] = rhs_shape[0]; dst_shape[1] = lhs_shape[1]; if(data_type == DataType::QASYMM8) { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } else { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyReshapedOnlyRHS3DValidationFixture : public framework::Fixture { public: template void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = transpose_rhs; // In case of GEMM3D, m is the product between m_w and m_h const unsigned int m = m_w * m_h; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h, data_type); _reference = compute_reference(lhs_shape, rhs_shape, m_h, data_type); } protected: template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } break; case DataType::QASYMM8_SIGNED: { std::uniform_int_distribution<> distribution(-127, 126); library->fill(tensor, distribution, i); } break; default: ARM_COMPUTE_ERROR("Unsupported data type"); } } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h, DataType data_type) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; GEMMKernelInfo gemm_info; gemm_info.m = M; gemm_info.n = N; gemm_info.k = K; gemm_info.depth_output_gemm3d = m_h; gemm_info.lhs_info = lhs_info; gemm_info.rhs_info = rhs_info; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs, &rhs_reshaped, &dst, gemm_info); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h, DataType data_type) { TensorShape dst_shape = lhs_shape; dst_shape.set(0, rhs_shape[0]); dst_shape.set(1, lhs_shape[1] / m_h); dst_shape.set(2, m_h); dst_shape.set(3, lhs_shape[2]); if(data_type == DataType::QASYMM8) { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } else { // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyNativeValidationFixture : public framework::Fixture { public: template void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info); _reference = compute_reference(lhs_shape, rhs_shape); } protected: template void fill(U &&tensor, int i) { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info) { // Create tensors TensorType lhs = create_tensor(lhs_shape, DataType::QASYMM8, 1); TensorType rhs = create_tensor(rhs_shape, DataType::QASYMM8, 1); TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function GEMMFunctionType gemm; gemm.configure(&lhs, &rhs, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape) { TensorShape dst_shape = lhs_shape; dst_shape[0] = rhs_shape[0]; dst_shape[1] = lhs_shape[1]; // Create reference SimpleTensor lhs{ lhs_shape, DataType::QASYMM8, 1 }; SimpleTensor rhs{ rhs_shape, DataType::QASYMM8, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpMatrixMultiplyNative3DValidationFixture : public framework::Fixture { public: template void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; // In case of GEMM3D, m is the product between m_w and m_h const unsigned int m = m_w * m_h; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h); _reference = compute_reference(lhs_shape, rhs_shape, m_h); } protected: template void fill(U &&tensor, int i) { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h) { // Create tensors TensorType lhs = create_tensor(lhs_shape, DataType::QASYMM8, 1); TensorType rhs = create_tensor(rhs_shape, DataType::QASYMM8, 1); TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function GEMMFunctionType gemm; gemm.configure(&lhs, &rhs, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h) { TensorShape dst_shape = lhs_shape; dst_shape.set(0, rhs_shape[0]); dst_shape.set(1, lhs_shape[1] / m_h); dst_shape.set(2, m_h); dst_shape.set(3, lhs_shape[2]); // Create reference SimpleTensor lhs{ lhs_shape, DataType::QASYMM8, 1 }; SimpleTensor rhs{ rhs_shape, DataType::QASYMM8, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemmlowp_matrix_multiply_core(lhs, rhs, dst_shape, 0, 0); } TensorType _target{}; SimpleTensor _reference{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */