/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE #define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/GEMMLowp.h" #include namespace arm_compute { namespace test { namespace validation { template class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_c, int32_t a_offset, int32_t b_offset) { _target = compute_target(shape_a, shape_b, shape_c, a_offset, b_offset); _reference = compute_reference(shape_a, shape_b, shape_c, a_offset, b_offset); } protected: template void fill(U &&tensor, int i) { // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path std::uniform_int_distribution<> distribution(1, 254); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, int32_t a_offset, int32_t b_offset) { // Create tensors TensorType a = create_tensor(shape_a, DataType::QASYMM8, 1); TensorType b = create_tensor(shape_b, DataType::QASYMM8, 1); TensorType c = create_tensor(shape_c, DataType::S32, 1); a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset)); b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset)); // Create and configure function // The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output FunctionType gemmlowp; gemmlowp.configure(&a, &b, &c, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_c[2] : 1), reinterpret_input_as_3d)); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(a), 0); fill(AccessorType(b), 1); // Compute GEMM function gemmlowp.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, int32_t a_offset, int32_t b_offset) { TensorShape shape_a_to_use = shape_a; if(reinterpret_input_as_3d) { // Collapse the second and third dimension if the input is 3D shape_a_to_use.collapse(2U, 1U); } // Create reference SimpleTensor a{ shape_a_to_use, DataType::QASYMM8, 1 }; SimpleTensor b{ shape_b, DataType::QASYMM8, 1 }; // Fill reference fill(a, 0); fill(b, 1); return reference::gemmlowp_matrix_multiply_core(a, b, shape_c, a_offset, b_offset); } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias); _reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QASYMM8, 1); // Create and configure function FunctionType output_stage; output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_offset, result_mult_int, result_shift, min, max); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_int32_to_uint8_scale(a, b, result_offset, result_mult_int, result_shift, min, max); } else { return reference::gemmlowp_quantize_down_int32_to_uint8_scale(a, result_offset, result_mult_int, result_shift, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { _target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias); _reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias); } protected: template void fill(U &&tensor, int i) { std::uniform_int_distribution<> distribution(-6000, 6000); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { TensorShape shape_bias(shape[0]); // Create tensors TensorType a = create_tensor(shape, DataType::S32, 1); TensorType b = create_tensor(shape_bias, DataType::S32, 1); TensorType c = create_tensor(shape, DataType::QASYMM8, 1); // Create and configure function FunctionType output_stage; output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); c.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(a), 0); if(add_bias) { ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate bias tensor b.allocator()->allocate(); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensor fill(AccessorType(b), 1); } // Compute GEMM function output_stage.run(); return c; } SimpleTensor compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias) { // Create reference TensorShape shape_bias(shape[0]); SimpleTensor a{ shape, DataType::S32, 1 }; SimpleTensor b{ shape_bias, DataType::S32, 1 }; // Fill reference fill(a, 0); if(add_bias) { // Fill bias fill(b, 1); return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint(a, b, result_fixed_point_multiplier, result_shift, result_offset_after_shift, min, max); } else { return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint(a, result_fixed_point_multiplier, result_shift, result_offset_after_shift, min, max); } } TensorType _target{}; SimpleTensor _reference{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */