/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_GEMM_FIXTURE #define ARM_COMPUTE_TEST_GEMM_FIXTURE #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/GEMM.h" #include namespace arm_compute { namespace test { namespace validation { template class GEMMValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_c, TensorShape output_shape, float alpha, float beta, bool pretranspose, DataType data_type) { _target = compute_target(shape_a, shape_b, shape_c, output_shape, alpha, beta, pretranspose, data_type); _reference = compute_reference(shape_a, shape_b, shape_c, output_shape, alpha, beta, data_type); } protected: template void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f) { switch(tensor.data_type()) { case DataType::F16: case DataType::F32: { std::uniform_real_distribution<> distribution(lo, hi); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, const TensorShape &output_shape, float alpha, float beta, bool pretranspose, DataType data_type) { // Create tensors TensorType a = create_tensor(shape_a, data_type, 1); TensorType b = create_tensor(shape_b, data_type, 1); TensorType c = create_tensor(shape_c, data_type, 1); TensorType dst = create_tensor(output_shape, data_type, 1); // Create and configure function FunctionType gemm; // The GEMMinfo includes the values of the depth in case of reinterpreted 3d output. // If the output shape has the same number of dimensions of the input the method called is a 2D matrix multiplication (depth_output_reinterpreted_as_3D = 0), // in the other case we have to use the reinterpreted version of GEMM (depth_output_reinterpreted_as_3D = depth of the 3D output). gemm.configure(&a, &b, (disable_c) ? nullptr : &c, &dst, alpha, beta, GEMMInfo(false, false, false, (reinterpret_ouput_as_3d ? output_shape[2] : 0), reinterpret_input_as_3d)); ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); c.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(a), 0); fill(AccessorType(b), 1); if(!disable_c) { fill(AccessorType(c), 2); } // Compute GEMM function gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, const TensorShape &output_shape, float alpha, float beta, DataType data_type) { TensorShape shape_a_to_use = shape_a; if(reinterpret_input_as_3d) { // Collapse the second and third dimension if the input is 3D shape_a_to_use.collapse(2U, 1U); } // Create reference SimpleTensor a{ shape_a_to_use, data_type, 1 }; SimpleTensor b{ shape_b, data_type, 1 }; SimpleTensor c{ shape_c, data_type, 1 }; // Fill reference fill(a, 0); fill(b, 1); if(!disable_c) { fill(c, 2); return reference::gemm(a, b, c, alpha, beta); } else { // Setting beta to 0 will effectively disable C for the // computation of the reference: alpha * A * B + 0 * C return reference::gemm(a, b, c, alpha, 0.f); } } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMMatrixMultiplyReshapedValidationFixture : public framework::Fixture { public: template void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs, bool interleave_rhs, DataType data_type, float alpha) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; lhs_info.v0 = v0; lhs_info.interleave = interleave_lhs; lhs_info.transpose = false; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = true; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type, alpha); _reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha); } protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0) std::uniform_real_distribution<> distribution_inf(std::numeric_limits::infinity(), std::numeric_limits::infinity()); library->fill_borders_with_garbage(tensor, distribution_inf, i); } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type, float alpha) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType lhs_reshaped; TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeLHSFunctionType reshape_lhs; ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info); reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, alpha, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); lhs_reshaped.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_lhs.run(); reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha) { TensorShape dst_shape = lhs_shape; dst_shape[0] = rhs_shape[0]; dst_shape[1] = lhs_shape[1]; // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; SimpleTensor c{ dst_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemm(lhs, rhs, c, alpha, 0.0f); } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture { public: template void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs, bool interleave_rhs, DataType data_type, float alpha) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; lhs_info.v0 = v0; lhs_info.interleave = interleave_lhs; lhs_info.transpose = false; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = true; // In case of GEMM3D, m is the product between m_w and m_h const unsigned int m = m_w * m_h; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type, alpha, m_h); _reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, m_h); } protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type, float alpha, unsigned int m_h) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType lhs_reshaped; TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeLHSFunctionType reshape_lhs; ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info); reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, alpha, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); lhs_reshaped.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_lhs.run(); reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, unsigned int m_h) { TensorShape dst_shape = lhs_shape; dst_shape.set(0, rhs_shape[0]); dst_shape.set(1, lhs_shape[1] / m_h); dst_shape.set(2, m_h); dst_shape.set(3, lhs_shape[2]); // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; SimpleTensor c{ dst_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemm(lhs, rhs, c, alpha, 0.0f); } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMMatrixMultiplyReshapedOnlyRHSValidationFixture : public framework::Fixture { public: template void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type, float alpha) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = transpose_rhs; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type, alpha); _reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha); } protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0) std::uniform_real_distribution<> distribution_inf(std::numeric_limits::infinity(), std::numeric_limits::infinity()); library->fill_borders_with_garbage(tensor, distribution_inf, i); } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type, float alpha) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs, &rhs_reshaped, &dst, alpha, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha) { TensorShape dst_shape = lhs_shape; dst_shape[0] = rhs_shape[0]; dst_shape[1] = lhs_shape[1]; // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; SimpleTensor c{ dst_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemm(lhs, rhs, c, alpha, 0.0f); } TensorType _target{}; SimpleTensor _reference{}; }; template class GEMMMatrixMultiplyReshapedOnlyRHS3DValidationFixture : public framework::Fixture { public: template void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type, float alpha) { GEMMLHSMatrixInfo lhs_info; lhs_info.m0 = m0; lhs_info.k0 = k0; GEMMRHSMatrixInfo rhs_info; rhs_info.n0 = n0; rhs_info.k0 = k0; rhs_info.h0 = h0; rhs_info.interleave = interleave_rhs; rhs_info.transpose = transpose_rhs; // In case of GEMM3D, m is the product between m_w and m_h const unsigned int m = m_w * m_h; // Set the tensor shapes for LHS and RHS matrices const TensorShape lhs_shape(k, m, batch_size); const TensorShape rhs_shape(n, k, batch_size); _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type, alpha, m_h); _reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, m_h); } protected: template void fill(U &&tensor, int i) { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); } TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type, float alpha, unsigned int m_h) { // Create tensors TensorType lhs = create_tensor(lhs_shape, data_type, 1); TensorType rhs = create_tensor(rhs_shape, data_type, 1); TensorType rhs_reshaped; TensorType dst; const unsigned int M = lhs_shape[1]; const unsigned int N = rhs_shape[0]; const unsigned int K = lhs_shape[0]; // The output tensor will be auto-initialized within the function // Create and configure function ReshapeRHSFunctionType reshape_rhs; GEMMFunctionType gemm; reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info); gemm.configure(&lhs, &rhs_reshaped, &dst, alpha, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h)); ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors lhs.allocator()->allocate(); rhs.allocator()->allocate(); rhs_reshaped.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(lhs), 0); fill(AccessorType(rhs), 1); // Compute GEMM reshape_rhs.run(); gemm.run(); return dst; } SimpleTensor compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, unsigned int m_h) { TensorShape dst_shape = lhs_shape; dst_shape.set(0, rhs_shape[0]); dst_shape.set(1, lhs_shape[1] / m_h); dst_shape.set(2, m_h); dst_shape.set(3, lhs_shape[2]); // Create reference SimpleTensor lhs{ lhs_shape, data_type, 1 }; SimpleTensor rhs{ rhs_shape, data_type, 1 }; SimpleTensor c{ dst_shape, data_type, 1 }; // Fill reference fill(lhs, 0); fill(rhs, 1); return reference::gemm(lhs, rhs, c, alpha, 0.0f); } TensorType _target{}; SimpleTensor _reference{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_GEMM_FIXTURE */