/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_FULLY_CONNECTED_LAYER_FIXTURE #define ARM_COMPUTE_TEST_FULLY_CONNECTED_LAYER_FIXTURE #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/RawTensor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/FullyConnectedLayer.h" #include "tests/validation/reference/Utils.h" #include namespace arm_compute { namespace test { namespace validation { template class FullyConnectedLayerValidationGenericFixture : public framework::Fixture { public: using TBias = typename std::conditional::type, uint8_t>::value, int32_t, T>::type; public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type, QuantizationInfo quantization_info) { ARM_COMPUTE_UNUSED(weights_shape); ARM_COMPUTE_UNUSED(bias_shape); _data_type = data_type; _bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type; _quantization_info = quantization_info; _target = compute_target(input_shape, weights_shape, bias_shape, output_shape, transpose_weights, reshape_weights); _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, transpose_weights, reshape_weights); } protected: template void fill(U &&tensor, int i) { if(is_data_type_quantized_asymmetric(_data_type)) { std::uniform_int_distribution distribution(0, 30); library->fill(tensor, distribution, i); } else if(_data_type == DataType::S32) { std::uniform_int_distribution distribution(-50, 50); library->fill(tensor, distribution, i); } else if(is_data_type_float(_data_type)) { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); } else { library->fill_tensor_uniform(tensor, i); } } TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, bool transpose_weights, bool reshape_weights) { TensorShape reshaped_weights_shape(weights_shape); // Test actions depending on the target settings // // | reshape | !reshape // -----------+-----------+--------------------------- // transpose | | *** // -----------+-----------+--------------------------- // !transpose | transpose | transpose // | | // // ***: That combination is invalid. But we can ignore the transpose flag and handle all !reshape the same if(!reshape_weights || !transpose_weights) { const size_t shape_x = reshaped_weights_shape.x(); reshaped_weights_shape.set(0, reshaped_weights_shape.y()); reshaped_weights_shape.set(1, shape_x); } // Create tensors TensorType src = create_tensor(input_shape, _data_type, 1, _quantization_info); TensorType weights = create_tensor(reshaped_weights_shape, _data_type, 1, _quantization_info); TensorType bias = create_tensor(bias_shape, _bias_data_type, 1, _quantization_info); TensorType dst = create_tensor(output_shape, _data_type, 1, _quantization_info); // Create Fully Connected layer info FullyConnectedLayerInfo fc_info; fc_info.transpose_weights = transpose_weights; fc_info.are_weights_reshaped = !reshape_weights; // Create and configure function. FunctionType fc; fc.configure(&src, &weights, &bias, &dst, fc_info); ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors src.allocator()->allocate(); weights.allocator()->allocate(); bias.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(src), 0); fill(AccessorType(bias), 2); if(!reshape_weights || !transpose_weights) { TensorShape tmp_shape(weights_shape); RawTensor tmp(tmp_shape, _data_type, 1); // Fill with original shape fill(tmp, 1); // Transpose elementwise tmp = transpose(tmp); AccessorType weights_accessor(weights); for(int i = 0; i < tmp.num_elements(); ++i) { Coordinates coord = index2coord(tmp.shape(), i); std::copy_n(static_cast(tmp(coord)), tmp.element_size(), static_cast(weights_accessor(coord))); } } else { fill(AccessorType(weights), 1); } // Compute NEFullyConnectedLayer function fc.run(); return dst; } SimpleTensor compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, bool transpose_weights, bool reshape_weights) { // Create reference SimpleTensor src{ input_shape, _data_type, 1, _quantization_info }; SimpleTensor weights{ weights_shape, _data_type, 1, _quantization_info }; SimpleTensor bias{ bias_shape, _bias_data_type, 1, _quantization_info }; // Fill reference fill(src, 0); fill(weights, 1); fill(bias, 2); return reference::fully_connected_layer(src, weights, bias, output_shape); } TensorType _target{}; SimpleTensor _reference{}; DataType _data_type{}; DataType _bias_data_type{}; QuantizationInfo _quantization_info{}; }; template class FullyConnectedLayerValidationFixture : public FullyConnectedLayerValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type) { FullyConnectedLayerValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, transpose_weights, reshape_weights, data_type, QuantizationInfo()); } }; template class FullyConnectedLayerValidationQuantizedFixture : public FullyConnectedLayerValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type, QuantizationInfo quantization_info) { FullyConnectedLayerValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, transpose_weights, reshape_weights, data_type, quantization_info); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_FULLY_CONNECTED_LAYER_FIXTURE */