/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/fixtures/ConvolutionLayerFixture.h" #include "tests/validation/reference/ConvolutionLayer.h" #include namespace arm_compute { namespace test { namespace validation { template class DirectConvolutionValidationGenericFixture : public framework::Fixture { public: using TBias = typename std::conditional::type, uint8_t>::value, int32_t, T>::type; public: template void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, int fractional_bits, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { _fractional_bits = fractional_bits; _quantization_info = quantization_info; _data_type = data_type; const TensorShape weights_shape(kernel_size, kernel_size, input_shape.z(), num_kernels); const TensorShape bias_shape(num_kernels); const PadStrideInfo info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR); const TensorShape output_shape = get_output_shape(input_shape, weights_shape, info); const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type; _target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, fractional_bits, quantization_info, act_info); _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, fractional_bits, quantization_info, act_info); } template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataType data_type, int fractional_bits, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { ARM_COMPUTE_UNUSED(dilation); _fractional_bits = fractional_bits; _quantization_info = quantization_info; _data_type = data_type; const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type; _target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, fractional_bits, quantization_info, act_info); _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, fractional_bits, quantization_info, act_info); } protected: template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { std::uniform_int_distribution distribution(0, 50); library->fill(tensor, distribution, i); break; } case DataType::F16: case DataType::F32: { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); break; } case DataType::S32: { std::uniform_int_distribution distribution(-5, 5); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info, DataType data_type, DataType bias_data_type, int fixed_point_position, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { // Create tensors TensorType src = create_tensor(input_shape, data_type, 1, fixed_point_position, quantization_info); TensorType weights = create_tensor(weights_shape, data_type, 1, fixed_point_position, quantization_info); TensorType bias = create_tensor(bias_shape, bias_data_type, 1, fixed_point_position, quantization_info); TensorType dst = create_tensor(output_shape, data_type, 1, fixed_point_position, quantization_info); // Create and configure function FunctionType conv; conv.configure(&src, &weights, &bias, &dst, info, act_info); ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors src.allocator()->allocate(); weights.allocator()->allocate(); bias.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(src), 0); fill(AccessorType(weights), 1); fill(AccessorType(bias), 2); // Compute NEConvolutionLayer function conv.run(); return dst; } SimpleTensor compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info, DataType data_type, DataType bias_data_type, int fixed_point_position, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { // Create reference SimpleTensor src{ input_shape, data_type, 1, fixed_point_position, quantization_info }; SimpleTensor weights{ weights_shape, data_type, 1, fixed_point_position, quantization_info }; SimpleTensor bias{ bias_shape, bias_data_type, 1, fixed_point_position, quantization_info }; // Fill reference fill(src, 0); fill(weights, 1); fill(bias, 2); return (act_info.enabled()) ? reference::activation_layer(reference::convolution_layer(src, weights, bias, output_shape, info), act_info) : reference::convolution_layer(src, weights, bias, output_shape, info); } TensorType _target{}; SimpleTensor _reference{}; int _fractional_bits{}; QuantizationInfo _quantization_info{}; DataType _data_type{}; private: TensorShape get_output_shape(TensorShape in_shape, TensorShape kernel_shape, const PadStrideInfo &info) { TensorShape out_shape(in_shape); const std::pair scaled_dims = scaled_dimensions(in_shape.x(), in_shape.y(), kernel_shape.x(), kernel_shape.y(), info); out_shape.set(0, scaled_dims.first); out_shape.set(1, scaled_dims.second); out_shape.set(2, kernel_shape[3]); return out_shape; } }; template class DirectConvolutionValidationFixture : public DirectConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, ActivationLayerInfo act_info) { DirectConvolutionValidationGenericFixture::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, 0, QuantizationInfo(), act_info); } }; template class DirectConvolutionValidationFixedPointFixture : public DirectConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, int fractional_bits, ActivationLayerInfo act_info) { DirectConvolutionValidationGenericFixture::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, fractional_bits, QuantizationInfo(), act_info); } }; template class DirectConvolutionValidationQuantizedFixture : public DirectConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { DirectConvolutionValidationGenericFixture::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, 0, quantization_info, act_info); } }; template class DirectConvolutionValidationWithTensorShapesQuantizedFixture : public DirectConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { DirectConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, 0, quantization_info, act_info); } }; template class DirectConvolutionValidationWithTensorShapesFixture : public DirectConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataType data_type, ActivationLayerInfo act_info) { DirectConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, 0, QuantizationInfo(), act_info); } }; } // namespace validation } // namespace test } // namespace arm_compute