/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE #define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/ActivationLayer.h" #include "tests/validation/reference/ConvolutionLayer.h" #include "tests/validation/reference/Permute.h" #include "tests/validation/reference/Utils.h" #include namespace arm_compute { class NEConvolutionLayer; namespace test { namespace validation { template class ConvolutionValidationGenericFixture : public framework::Fixture { public: using TBias = typename std::conditional::type, uint8_t>::value, int32_t, T>::type; public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type, DataType weights_data_type, DataLayout data_layout, QuantizationInfo quantization_info, QuantizationInfo weight_quantization_info, ActivationLayerInfo act_info) { _data_type = data_type; _weights_data_type = weights_data_type; _is_quantized = is_data_type_quantized_asymmetric(data_type); _bias_data_type = _is_quantized ? DataType::S32 : data_type; _quantization_info = quantization_info; _weight_quantization_info = weight_quantization_info; _data_layout = data_layout; _target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, dilation, act_info); _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation, act_info); } protected: template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { std::pair bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f); std::uniform_int_distribution distribution(bounds.first, bounds.second); library->fill(tensor, distribution, i); break; } case DataType::QSYMM8_PER_CHANNEL: { int min_bound = 128; int max_bound = -127; for(size_t i = 0; i < _weight_quantization_info.scale().size(); i++) { std::pair bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i); if(bounds.first < min_bound) { min_bound = bounds.first; } if(bounds.second > max_bound) { max_bound = bounds.second; } } std::uniform_int_distribution distribution(min_bound, max_bound); library->fill(tensor, distribution, i); break; } case DataType::S32: { std::uniform_int_distribution distribution(-100, 100); library->fill(tensor, distribution, i); break; } case DataType::F16: case DataType::F32: { std::uniform_real_distribution<> distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info, bool reshape_weights, const Size2D &dilation, const ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0); const unsigned int num_groups = input_shape[2] / weights_shape[2]; if(_data_layout == DataLayout::NHWC) { permute(input_shape, PermutationVector(2U, 0U, 1U)); permute(weights_shape, PermutationVector(2U, 0U, 1U)); permute(output_shape, PermutationVector(2U, 0U, 1U)); } const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); WeightsInfo weights_info(!reshape_weights, weights_shape[idx_width], weights_shape[idx_height], weights_shape[3]); TensorShape reshaped_weights_shape(weights_shape); // Create tensors TensorType src = create_tensor(input_shape, _data_type, 1, _quantization_info, _data_layout); TensorType weights = create_tensor(reshaped_weights_shape, _weights_data_type, 1, _weight_quantization_info, _data_layout); TensorType bias = create_tensor(bias_shape, _bias_data_type, 1, _quantization_info, _data_layout); TensorType dst = create_tensor(output_shape, _data_type, 1, _quantization_info, _data_layout); // Create and configure function FunctionType conv; conv.configure(&src, &weights, &bias, &dst, info, weights_info, dilation, act_info, num_groups); ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors src.allocator()->allocate(); weights.allocator()->allocate(); bias.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(src), 0); fill(AccessorType(weights), 1); fill(AccessorType(bias), 2); // Compute NEConvolutionLayer function conv.run(); return dst; } SimpleTensor compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info, const Size2D &dilation, const ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0); const unsigned int num_groups = input_shape[2] / weights_shape[2]; // Create reference SimpleTensor src{ input_shape, _data_type, 1, _quantization_info }; SimpleTensor weights{ weights_shape, _weights_data_type, 1, _weight_quantization_info }; SimpleTensor bias{ bias_shape, _bias_data_type, 1, _quantization_info }; // Fill reference fill(src, 0); fill(weights, 1); fill(bias, 2); return (act_info.enabled()) ? reference::activation_layer(reference::convolution_layer(src, weights, bias, output_shape, info, dilation, num_groups), act_info) : reference::convolution_layer(src, weights, bias, output_shape, info, dilation, num_groups); } TensorType _target{}; SimpleTensor _reference{}; DataType _data_type{}; DataType _weights_data_type{}; DataType _bias_data_type{}; DataLayout _data_layout{}; QuantizationInfo _quantization_info{}; QuantizationInfo _weight_quantization_info{}; bool _is_quantized = false; }; template class ConvolutionValidationFixture : public ConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type, DataLayout data_layout, ActivationLayerInfo act_info) { ConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights, data_type, data_type, data_layout, QuantizationInfo(), QuantizationInfo(), act_info); } }; template class ConvolutionValidationQuantizedFixture : public ConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type, DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info) { ConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights, data_type, data_type, data_layout, quantization_info, quantization_info, act_info); } }; template class ConvolutionValidationQuantizedPerChannelFixture : public ConvolutionValidationGenericFixture { public: template void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type, DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataType weights_data_type) { std::vector weights_scales{}; std::mt19937 gen(library->seed()); std::uniform_real_distribution<> dis(0.01f, 1); for(size_t i = 0; i < output_shape[2]; ++i) { weights_scales.push_back(dis(gen)); } ConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights, data_type, weights_data_type, data_layout, quantization_info, QuantizationInfo(weights_scales), act_info); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */