/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_BATCH_NORMALIZATION_LAYER_FUSION_FIXTURE #define ARM_COMPUTE_TEST_BATCH_NORMALIZATION_LAYER_FUSION_FIXTURE #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/BatchNormalizationLayer.h" #include "tests/validation/reference/ConvolutionLayer.h" namespace arm_compute { namespace test { namespace validation { template class BatchNormalizationLayerFusionValidationFixture : public framework::Fixture { public: template void setup(TensorShape src_shape, TensorShape w_shape, TensorShape b_shape, TensorShape dst_shape, PadStrideInfo info, Size2D dilation, bool use_conv_b, bool use_beta, bool use_gamma, float epsilon, DataType dt, DataLayout data_layout) { ARM_COMPUTE_UNUSED(dilation); _data_type = dt; _data_layout = data_layout; _use_conv_b = use_conv_b; _use_beta = use_beta; _use_gamma = use_gamma; _target = compute_target(src_shape, w_shape, b_shape, dst_shape, info, epsilon); _reference = compute_reference(src_shape, w_shape, b_shape, dst_shape, info, epsilon); } protected: template void fill(U &&src, U &&w_tensor, U &&b_tensor, U &&mean_tensor, U &&var_tensor, U &&beta_tensor, U &&gamma_tensor) { std::uniform_real_distribution<> distribution(-1.f, 1.f); std::uniform_real_distribution<> distribution_gz(0, 1.f); library->fill(src, distribution, 0); library->fill(w_tensor, distribution, 1); library->fill(mean_tensor, distribution, 2); library->fill(var_tensor, distribution_gz, 3); _use_conv_b ? library->fill(b_tensor, distribution, 4) : library->fill_tensor_value(b_tensor, 0.f); _use_beta ? library->fill(beta_tensor, distribution, 5) : library->fill_tensor_value(beta_tensor, 0.f); _use_gamma ? library->fill(gamma_tensor, distribution, 6) : library->fill_tensor_value(gamma_tensor, 1.f); } TensorType compute_target(TensorShape src_shape, TensorShape w_shape, TensorShape b_shape, TensorShape dst_shape, PadStrideInfo info, float epsilon) { if(_data_layout == DataLayout::NHWC) { permute(src_shape, PermutationVector(2U, 0U, 1U)); permute(w_shape, PermutationVector(2U, 0U, 1U)); permute(dst_shape, PermutationVector(2U, 0U, 1U)); } // Create tensors TensorType src = create_tensor(src_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType conv_w = create_tensor(w_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType conv_b = create_tensor(b_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType bn_mean = create_tensor(b_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType bn_var = create_tensor(b_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType bn_beta = create_tensor(b_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType bn_gamma = create_tensor(b_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType fused_w = create_tensor(w_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType fused_b = create_tensor(b_shape, _data_type, 1, QuantizationInfo(), _data_layout); TensorType dst = create_tensor(dst_shape, _data_type, 1, QuantizationInfo(), _data_layout); // Create and configure function FusionFunctionType fuse_fn; ConvolutionFunctionType conv_fn; TensorType *conv_b_ptr = _use_conv_b ? &conv_b : nullptr; TensorType *beta_ptr = _use_beta ? &bn_beta : nullptr; TensorType *gamma_ptr = _use_gamma ? &bn_gamma : nullptr; fuse_fn.configure(&conv_w, &bn_mean, &bn_var, &fused_w, &fused_b, conv_b_ptr, beta_ptr, gamma_ptr, epsilon); conv_fn.configure(&src, &fused_w, &fused_b, &dst, info); ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(conv_w.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(conv_b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bn_mean.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bn_var.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bn_beta.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(bn_gamma.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(fused_w.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(fused_b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors src.allocator()->allocate(); conv_w.allocator()->allocate(); conv_b.allocator()->allocate(); bn_mean.allocator()->allocate(); bn_var.allocator()->allocate(); bn_beta.allocator()->allocate(); bn_gamma.allocator()->allocate(); fused_w.allocator()->allocate(); fused_b.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!conv_w.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!conv_b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bn_mean.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bn_var.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bn_beta.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!bn_gamma.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!fused_w.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!fused_b.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Fill tensors fill(AccessorType(src), AccessorType(conv_w), AccessorType(conv_b), AccessorType(bn_mean), AccessorType(bn_var), AccessorType(bn_beta), AccessorType(bn_gamma)); // Compute function fuse_fn.run(); conv_fn.run(); return dst; } SimpleTensor compute_reference(TensorShape src_shape, TensorShape w_shape, TensorShape b_shape, TensorShape dst_shape, PadStrideInfo info, float epsilon) { // Create reference SimpleTensor src{ src_shape, _data_type, 1 }; SimpleTensor conv_w{ w_shape, _data_type, 1 }; SimpleTensor conv_b{ b_shape, _data_type, 1 }; SimpleTensor bn_var{ b_shape, _data_type, 1 }; SimpleTensor bn_mean{ b_shape, _data_type, 1 }; SimpleTensor bn_beta{ b_shape, _data_type, 1 }; SimpleTensor bn_gamma{ b_shape, _data_type, 1 }; // Fill reference fill(src, conv_w, conv_b, bn_mean, bn_var, bn_beta, bn_gamma); // Calculate Conv + BN auto conv_res = reference::convolution_layer(src, conv_w, conv_b, dst_shape, info); return reference::batch_normalization_layer(conv_res, bn_mean, bn_var, bn_beta, bn_gamma, epsilon, ActivationLayerInfo()); } TensorType _target{}; SimpleTensor _reference{}; DataType _data_type{}; DataLayout _data_layout{}; bool _use_conv_b{}; bool _use_beta{}; bool _use_gamma{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_BATCH_NORMALIZATION_LAYER_FUSION_FIXTURE */