/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_BATCHMATMULFIXTURE #define ACL_TESTS_VALIDATION_FIXTURES_BATCHMATMULFIXTURE #include "arm_compute/core/KernelDescriptors.h" #include "src/gpu/cl/kernels/ClNativeMatMulKernel.h" #include "tests/CL/CLAccessor.h" #include "tests/CL/Helper.h" #include "tests/framework/Fixture.h" #include "tests/validation/reference/GEMM.h" #include "tests/validation/reference/Permute.h" #include "tests/validation/reference/ReshapeLayer.h" #include namespace arm_compute { namespace test { namespace validation { using namespace arm_compute::opencl::kernels; template class BatchMatMulValidationFixture : public framework::Fixture { public: template void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool pretranspose_a, bool pretranspose_b, const int M0, const int N0, const int K0, DataType data_type) { // For brevity, the input shapes are assumed to be not-transposed for both Lhs and Rhs matrices. if(pretranspose_a) { permute(shape_a, PermutationVector(1U, 0U)); } if(pretranspose_b) { permute(shape_b, PermutationVector(1U, 0U)); } _target = compute_target(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, M0, N0, K0, data_type); _reference = compute_reference(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, data_type); } protected: template void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f) { switch(tensor.data_type()) { case DataType::F16: { arm_compute::utils::uniform_real_distribution_16bit distribution{ float(lo), float(hi) }; library->fill(tensor, distribution, i); break; } case DataType::F32: { std::uniform_real_distribution distribution(lo, hi); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } CLTensor compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, const int M0, const int N0, const int K0, DataType data_type) { // Create tensors CLTensor a = create_tensor(shape_a, data_type, 1); CLTensor b = create_tensor(shape_b, data_type, 1); CLTensor dst = create_tensor(output_shape, data_type, 1); CLSynthetizeOperator batchMatMul{}; MatMulKernelInfo matmul_info; matmul_info.adj_lhs = pretranspose_a; matmul_info.adj_rhs = pretranspose_b; matmul_info.m0 = M0; matmul_info.n0 = N0; matmul_info.k0 = K0; batchMatMul.configure(a.info(), b.info(), dst.info(), matmul_info); ARM_COMPUTE_ASSERT(a.info()->is_resizable()); ARM_COMPUTE_ASSERT(b.info()->is_resizable()); ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_ASSERT(!a.info()->is_resizable()); ARM_COMPUTE_ASSERT(!b.info()->is_resizable()); ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); // Fill tensors fill(CLAccessor(a), 0); fill(CLAccessor(b), 1); // Compute batchMatMul kernel ITensorPack tensors_pack({ { ACL_SRC_0, &a }, { ACL_SRC_1, &b }, { ACL_DST, &dst } }); batchMatMul.run(tensors_pack); return dst; } SimpleTensor compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, DataType data_type) { // We collapse dimensions > 3 onto dimension 3, i.e. 5D+ tensors will look like 4D // This is necessary unless we choose to extend gemm reference for 5D+ tensors TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimW); TensorShape shape_a_collapsed = shape_a.collapsed_from(Window::DimW); TensorShape shape_b_collapsed = shape_b.collapsed_from(Window::DimW); // Create reference SimpleTensor a{ shape_a_collapsed, data_type, 1 }; SimpleTensor b{ shape_b_collapsed, data_type, 1 }; SimpleTensor c{ output_shape_collapsed, data_type, 1 }; // Fill reference fill(a, 0); fill(b, 1); /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M), therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K) in order to be able to call reference implementation that works with (B x M x K) input. Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */ // Define transposed shapes TensorShape a_transposed_shape(a.shape()); a_transposed_shape.set(0, a.shape().y()); a_transposed_shape.set(1, a.shape().x()); TensorShape b_transposed_shape(b.shape()); b_transposed_shape.set(0, b.shape().y()); b_transposed_shape.set(1, b.shape().x()); // Define transposed tensors SimpleTensor a_transposed{ a_transposed_shape, data_type }; SimpleTensor b_transposed{ b_transposed_shape, data_type }; // pretranspose a if necessary if(pretranspose_a) { a_transposed = reference::permute(a, PermutationVector(1U, 0U)); } // pretranspose b if necessary if(pretranspose_b) { b_transposed = reference::permute(b, PermutationVector(1U, 0U)); } // Setting beta to 0 will effectively disable C for the // computation of the reference: alpha * A * B + 0 * C // Use transposed tensors if boolean enabled else use original tensors SimpleTensor result = reference::gemm((pretranspose_a) ? a_transposed : a, (pretranspose_b) ? b_transposed : b, c, 1.0f, 0.f); // We reshape the gemm output back if the tensor is high dimensional if(output_shape_collapsed != output_shape) { result = reference::reshape_layer(result, output_shape); } return result; } CLTensor _target{}; SimpleTensor _reference{}; }; } // namespace validation } // namespace test } // namespace arm_compute #endif /* ACL_TESTS_VALIDATION_FIXTURES_BATCHMATMULFIXTURE */