/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_TEST_VALIDATION_H__ #define __ARM_COMPUTE_TEST_VALIDATION_H__ #include "arm_compute/core/IArray.h" #include "arm_compute/core/Types.h" #include "support/ToolchainSupport.h" #include "tests/IAccessor.h" #include "tests/SimpleTensor.h" #include "tests/Types.h" #include "tests/Utils.h" #include "tests/framework/Asserts.h" #include "tests/framework/Exceptions.h" #include "utils/TypePrinter.h" #include #include #include namespace arm_compute { namespace test { namespace validation { /** Class reprensenting an absolute tolerance value. */ template class AbsoluteTolerance { public: /** Underlying type. */ using value_type = T; /* Default constructor. * * Initialises the tolerance to 0. */ AbsoluteTolerance() = default; /** Constructor. * * @param[in] value Absolute tolerance value. */ explicit constexpr AbsoluteTolerance(T value) : _value{ value } { } /** Implicit conversion to the underlying type. * * @return the underlying type. */ constexpr operator T() const { return _value; } private: T _value{ std::numeric_limits::epsilon() }; }; /** Class reprensenting a relative tolerance value. */ template class RelativeTolerance { public: /** Underlying type. */ using value_type = T; /* Default constructor. * * Initialises the tolerance to 0. */ RelativeTolerance() = default; /** Constructor. * * @param[in] value Relative tolerance value. */ explicit constexpr RelativeTolerance(value_type value) : _value{ value } { } /** Implicit conversion to the underlying type. * * @return the underlying type. */ constexpr operator value_type() const { return _value; } private: value_type _value{ std::numeric_limits::epsilon() }; }; /** Print AbsoluteTolerance type. */ template inline ::std::ostream &operator<<(::std::ostream &os, const AbsoluteTolerance &tolerance) { os << static_cast::value_type>(tolerance); return os; } /** Print RelativeTolerance type. */ template inline ::std::ostream &operator<<(::std::ostream &os, const RelativeTolerance &tolerance) { os << static_cast::value_type>(tolerance); return os; } template bool compare_dimensions(const Dimensions &dimensions1, const Dimensions &dimensions2, const DataLayout &data_layout = DataLayout::NCHW) { ARM_COMPUTE_ERROR_ON(data_layout == DataLayout::UNKNOWN); if(data_layout == DataLayout::NCHW) { if(dimensions1.num_dimensions() != dimensions2.num_dimensions()) { return false; } for(unsigned int i = 0; i < dimensions1.num_dimensions(); ++i) { if(dimensions1[i] != dimensions2[i]) { return false; } } } else { // In case a 2D shape becomes 3D after permutation, the permuted tensor will have one dimension more and the first value will be 1 if((dimensions1.num_dimensions() != dimensions2.num_dimensions()) && ((dimensions1.num_dimensions() != (dimensions2.num_dimensions() + 1)) || (dimensions1.x() != 1))) { return false; } if((dimensions1[0] != dimensions2[2]) || (dimensions1[1] != dimensions2[0]) || (dimensions1[2] != dimensions2[1])) { return false; } for(unsigned int i = 3; i < dimensions1.num_dimensions(); ++i) { if(dimensions1[i] != dimensions2[i]) { return false; } } } return true; } /** Validate valid regions. * * - Dimensionality has to be the same. * - Anchors have to match. * - Shapes have to match. */ void validate(const arm_compute::ValidRegion ®ion, const arm_compute::ValidRegion &reference); /** Validate padding. * * Padding on all sides has to be the same. */ void validate(const arm_compute::PaddingSize &padding, const arm_compute::PaddingSize &reference); /** Validate padding. * * Padding on all sides has to be the same. */ void validate(const arm_compute::PaddingSize &padding, const arm_compute::PaddingSize &width_reference, const arm_compute::PaddingSize &height_reference); /** Validate tensors. * * - Dimensionality has to be the same. * - All values have to match. * * @note: wrap_range allows cases where reference tensor rounds up to the wrapping point, causing it to wrap around to * zero while the test tensor stays at wrapping point to pass. This may permit true erroneous cases (difference between * reference tensor and test tensor is multiple of wrap_range), but such errors would be detected by * other test cases. */ template > void validate(const IAccessor &tensor, const SimpleTensor &reference, U tolerance_value = U(), float tolerance_number = 0.f, float absolute_tolerance_value = 0.f); /** Validate tensors with valid region. * * - Dimensionality has to be the same. * - All values have to match. * * @note: wrap_range allows cases where reference tensor rounds up to the wrapping point, causing it to wrap around to * zero while the test tensor stays at wrapping point to pass. This may permit true erroneous cases (difference between * reference tensor and test tensor is multiple of wrap_range), but such errors would be detected by * other test cases. */ template > void validate(const IAccessor &tensor, const SimpleTensor &reference, const ValidRegion &valid_region, U tolerance_value = U(), float tolerance_number = 0.f, float absolute_tolerance_value = 0.f); /** Validate tensors with valid mask. * * - Dimensionality has to be the same. * - All values have to match. * * @note: wrap_range allows cases where reference tensor rounds up to the wrapping point, causing it to wrap around to * zero while the test tensor stays at wrapping point to pass. This may permit true erroneous cases (difference between * reference tensor and test tensor is multiple of wrap_range), but such errors would be detected by * other test cases. */ template > void validate(const IAccessor &tensor, const SimpleTensor &reference, const SimpleTensor &valid_mask, U tolerance_value = U(), float tolerance_number = 0.f, float absolute_tolerance_value = 0.f); /** Validate tensors against constant value. * * - All values have to match. */ void validate(const IAccessor &tensor, const void *reference_value); /** Validate border against a constant value. * * - All border values have to match the specified value if mode is CONSTANT. * - All border values have to be replicated if mode is REPLICATE. * - Nothing is validated for mode UNDEFINED. */ void validate(const IAccessor &tensor, BorderSize border_size, const BorderMode &border_mode, const void *border_value); /** Validate classified labels against expected ones. * * - All values should match */ void validate(std::vector classified_labels, std::vector expected_labels); /** Validate float value. * * - All values should match */ template > bool validate(T target, T reference, U tolerance = AbsoluteTolerance()); /** Validate key points. */ template > void validate_keypoints(T target_first, T target_last, U reference_first, U reference_last, V tolerance = AbsoluteTolerance(), float allowed_missing_percentage = 5.f, float allowed_mismatch_percentage = 5.f); /** Validate detection windows. */ template > void validate_detection_windows(T target_first, T target_last, U reference_first, U reference_last, V tolerance = AbsoluteTolerance(), float allowed_missing_percentage = 5.f, float allowed_mismatch_percentage = 5.f); template struct compare_base { /** Construct a comparison object. * * @param[in] target Target value. * @param[in] reference Reference value. * @param[in] tolerance Allowed tolerance. */ compare_base(typename T::value_type target, typename T::value_type reference, T tolerance = T(0)) : _target{ target }, _reference{ reference }, _tolerance{ tolerance } { } typename T::value_type _target{}; /**< Target value */ typename T::value_type _reference{}; /**< Reference value */ T _tolerance{}; /**< Tolerance value */ }; template struct compare; /** Compare values with an absolute tolerance */ template struct compare> : public compare_base> { using compare_base>::compare_base; /** Perform comparison */ operator bool() const { if(!support::cpp11::isfinite(this->_target) || !support::cpp11::isfinite(this->_reference)) { return false; } else if(this->_target == this->_reference) { return true; } using comparison_type = typename std::conditional::value, int64_t, U>::type; const comparison_type abs_difference(std::abs(static_cast(this->_target) - static_cast(this->_reference))); return abs_difference <= static_cast(this->_tolerance); } }; /** Compare values with a relative tolerance */ template struct compare> : public compare_base> { using compare_base>::compare_base; /** Perform comparison */ operator bool() const { if(!support::cpp11::isfinite(this->_target) || !support::cpp11::isfinite(this->_reference)) { return false; } else if(this->_target == this->_reference) { return true; } const U epsilon = (std::is_same::type>::value || (this->_reference == 0)) ? static_cast(0.01) : static_cast(1e-05); if(std::abs(static_cast(this->_reference) - static_cast(this->_target)) <= epsilon) { return true; } else { if(static_cast(this->_reference) == 0.0f) // We have checked whether _reference and _target is closing. If _reference is 0 but not closed to _target, it should return false { return false; } const double relative_change = std::abs((static_cast(this->_target) - static_cast(this->_reference)) / this->_reference); return relative_change <= static_cast(this->_tolerance); } } }; template void validate(const IAccessor &tensor, const SimpleTensor &reference, U tolerance_value, float tolerance_number, float absolute_tolerance_value) { // Validate with valid region covering the entire shape validate(tensor, reference, shape_to_valid_region(reference.shape()), tolerance_value, tolerance_number, absolute_tolerance_value); } template ::value>::type> void validate_wrap(const IAccessor &tensor, const SimpleTensor &reference, U tolerance_value, float tolerance_number) { // Validate with valid region covering the entire shape validate_wrap(tensor, reference, shape_to_valid_region(reference.shape()), tolerance_value, tolerance_number); } template void validate(const IAccessor &tensor, const SimpleTensor &reference, const ValidRegion &valid_region, U tolerance_value, float tolerance_number, float absolute_tolerance_value) { int64_t num_mismatches = 0; int64_t num_elements = 0; ARM_COMPUTE_EXPECT_EQUAL(tensor.element_size(), reference.element_size(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(tensor.data_type(), reference.data_type(), framework::LogLevel::ERRORS); if(reference.format() != Format::UNKNOWN) { ARM_COMPUTE_EXPECT_EQUAL(tensor.format(), reference.format(), framework::LogLevel::ERRORS); } ARM_COMPUTE_EXPECT_EQUAL(tensor.num_channels(), reference.num_channels(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(compare_dimensions(tensor.shape(), reference.shape(), tensor.data_layout()), framework::LogLevel::ERRORS); const int min_elements = std::min(tensor.num_elements(), reference.num_elements()); const int min_channels = std::min(tensor.num_channels(), reference.num_channels()); // Iterate over all elements within valid region, e.g. U8, S16, RGB888, ... for(int element_idx = 0; element_idx < min_elements; ++element_idx) { const Coordinates id = index2coord(reference.shape(), element_idx); Coordinates target_id(id); if(tensor.data_layout() == DataLayout::NHWC) { permute(target_id, PermutationVector(2U, 0U, 1U)); } if(is_in_valid_region(valid_region, id)) { // Iterate over all channels within one element for(int c = 0; c < min_channels; ++c) { const T &target_value = reinterpret_cast(tensor(target_id))[c]; const T &reference_value = reinterpret_cast(reference(id))[c]; if(!compare(target_value, reference_value, tolerance_value)) { if(absolute_tolerance_value != 0.f) { const AbsoluteTolerance abs_tolerance(absolute_tolerance_value); if(compare>(target_value, reference_value, abs_tolerance)) { continue; } } ARM_COMPUTE_TEST_INFO("id = " << id); ARM_COMPUTE_TEST_INFO("channel = " << c); ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << framework::make_printable(target_value)); ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << framework::make_printable(reference_value)); ARM_COMPUTE_TEST_INFO("tolerance = " << std::setprecision(5) << framework::make_printable(static_cast(tolerance_value))); framework::ARM_COMPUTE_PRINT_INFO(); ++num_mismatches; } ++num_elements; } } } if(num_elements > 0) { const int64_t absolute_tolerance_number = tolerance_number * num_elements; const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched (maximum tolerated " << std::setprecision(2) << tolerance_number * 100 << "%)"); ARM_COMPUTE_EXPECT(num_mismatches <= absolute_tolerance_number, framework::LogLevel::ERRORS); } } template ::value>::type> void validate_wrap(const IAccessor &tensor, const SimpleTensor &reference, const ValidRegion &valid_region, U tolerance_value, float tolerance_number) { int64_t num_mismatches = 0; int64_t num_elements = 0; ARM_COMPUTE_EXPECT_EQUAL(tensor.element_size(), reference.element_size(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(tensor.data_type(), reference.data_type(), framework::LogLevel::ERRORS); if(reference.format() != Format::UNKNOWN) { ARM_COMPUTE_EXPECT_EQUAL(tensor.format(), reference.format(), framework::LogLevel::ERRORS); } ARM_COMPUTE_EXPECT_EQUAL(tensor.num_channels(), reference.num_channels(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(compare_dimensions(tensor.shape(), reference.shape(), tensor.data_layout()), framework::LogLevel::ERRORS); const int min_elements = std::min(tensor.num_elements(), reference.num_elements()); const int min_channels = std::min(tensor.num_channels(), reference.num_channels()); // Iterate over all elements within valid region, e.g. U8, S16, RGB888, ... for(int element_idx = 0; element_idx < min_elements; ++element_idx) { const Coordinates id = index2coord(reference.shape(), element_idx); Coordinates target_id(id); if(tensor.data_layout() == DataLayout::NHWC) { permute(target_id, PermutationVector(2U, 0U, 1U)); } if(is_in_valid_region(valid_region, id)) { // Iterate over all channels within one element for(int c = 0; c < min_channels; ++c) { const T &target_value = reinterpret_cast(tensor(target_id))[c]; const T &reference_value = reinterpret_cast(reference(id))[c]; bool equal = compare(target_value, reference_value, tolerance_value); // check for wrapping if(!equal) { if(!support::cpp11::isfinite(target_value) || !support::cpp11::isfinite(reference_value)) { equal = false; } else { using limits_type = typename std::make_unsigned::type; uint64_t max = std::numeric_limits::max(); uint64_t abs_sum = std::abs(static_cast(target_value)) + std::abs(static_cast(reference_value)); uint64_t wrap_difference = max - abs_sum; equal = wrap_difference < static_cast(tolerance_value); } } if(!equal) { ARM_COMPUTE_TEST_INFO("id = " << id); ARM_COMPUTE_TEST_INFO("channel = " << c); ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << framework::make_printable(target_value)); ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << framework::make_printable(reference_value)); ARM_COMPUTE_TEST_INFO("wrap_tolerance = " << std::setprecision(5) << framework::make_printable(static_cast(tolerance_value))); framework::ARM_COMPUTE_PRINT_INFO(); ++num_mismatches; } ++num_elements; } } } if(num_elements > 0) { const int64_t absolute_tolerance_number = tolerance_number * num_elements; const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched (maximum tolerated " << std::setprecision(2) << tolerance_number * 100 << "%)"); ARM_COMPUTE_EXPECT(num_mismatches <= absolute_tolerance_number, framework::LogLevel::ERRORS); } } template void validate(const IAccessor &tensor, const SimpleTensor &reference, const SimpleTensor &valid_mask, U tolerance_value, float tolerance_number, float absolute_tolerance_value) { int64_t num_mismatches = 0; int64_t num_elements = 0; ARM_COMPUTE_EXPECT_EQUAL(tensor.element_size(), reference.element_size(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(tensor.data_type(), reference.data_type(), framework::LogLevel::ERRORS); if(reference.format() != Format::UNKNOWN) { ARM_COMPUTE_EXPECT_EQUAL(tensor.format(), reference.format(), framework::LogLevel::ERRORS); } ARM_COMPUTE_EXPECT_EQUAL(tensor.num_channels(), reference.num_channels(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(compare_dimensions(tensor.shape(), reference.shape(), tensor.data_layout()), framework::LogLevel::ERRORS); const int min_elements = std::min(tensor.num_elements(), reference.num_elements()); const int min_channels = std::min(tensor.num_channels(), reference.num_channels()); // Iterate over all elements within valid region, e.g. U8, S16, RGB888, ... for(int element_idx = 0; element_idx < min_elements; ++element_idx) { const Coordinates id = index2coord(reference.shape(), element_idx); Coordinates target_id(id); if(tensor.data_layout() == DataLayout::NHWC) { permute(target_id, PermutationVector(2U, 0U, 1U)); } if(valid_mask[element_idx] == 1) { // Iterate over all channels within one element for(int c = 0; c < min_channels; ++c) { const T &target_value = reinterpret_cast(tensor(target_id))[c]; const T &reference_value = reinterpret_cast(reference(id))[c]; if(!compare(target_value, reference_value, tolerance_value)) { if(absolute_tolerance_value != 0.f) { const AbsoluteTolerance abs_tolerance(absolute_tolerance_value); if(compare>(target_value, reference_value, abs_tolerance)) { continue; } } ARM_COMPUTE_TEST_INFO("id = " << id); ARM_COMPUTE_TEST_INFO("channel = " << c); ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << framework::make_printable(target_value)); ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << framework::make_printable(reference_value)); ARM_COMPUTE_TEST_INFO("tolerance = " << std::setprecision(5) << framework::make_printable(static_cast(tolerance_value))); framework::ARM_COMPUTE_PRINT_INFO(); ++num_mismatches; } ++num_elements; } } else { ++num_elements; } } if(num_elements > 0) { const int64_t absolute_tolerance_number = tolerance_number * num_elements; const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched (maximum tolerated " << std::setprecision(2) << tolerance_number * 100 << "%)"); ARM_COMPUTE_EXPECT(num_mismatches <= absolute_tolerance_number, framework::LogLevel::ERRORS); } } template bool validate(T target, T reference, U tolerance) { ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << framework::make_printable(reference)); ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << framework::make_printable(target)); ARM_COMPUTE_TEST_INFO("tolerance = " << std::setprecision(5) << framework::make_printable(static_cast(tolerance))); const bool equal = compare(target, reference, tolerance); ARM_COMPUTE_EXPECT(equal, framework::LogLevel::ERRORS); return equal; } template void validate_min_max_loc(const MinMaxLocationValues &target, const MinMaxLocationValues &reference) { ARM_COMPUTE_EXPECT_EQUAL(target.min, reference.min, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(target.max, reference.max, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(target.min_loc.size(), reference.min_loc.size(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(target.max_loc.size(), reference.max_loc.size(), framework::LogLevel::ERRORS); for(uint32_t i = 0; i < target.min_loc.size(); ++i) { const auto same_coords = std::find_if(reference.min_loc.begin(), reference.min_loc.end(), [&target, i](Coordinates2D coord) { return coord.x == target.min_loc.at(i).x && coord.y == target.min_loc.at(i).y; }); ARM_COMPUTE_EXPECT(same_coords != reference.min_loc.end(), framework::LogLevel::ERRORS); } for(uint32_t i = 0; i < target.max_loc.size(); ++i) { const auto same_coords = std::find_if(reference.max_loc.begin(), reference.max_loc.end(), [&target, i](Coordinates2D coord) { return coord.x == target.max_loc.at(i).x && coord.y == target.max_loc.at(i).y; }); ARM_COMPUTE_EXPECT(same_coords != reference.max_loc.end(), framework::LogLevel::ERRORS); } } /** Check which keypoints from [first1, last1) are missing in [first2, last2) */ template std::pair compare_keypoints(T first1, T last1, U first2, U last2, V tolerance, bool check_mismatches = true) { /* Keypoint (x,y) should have similar strength (within tolerance) and other properties in both reference and target */ const auto compare_props_eq = [&](const KeyPoint & lhs, const KeyPoint & rhs) { return compare(lhs.strength, rhs.strength, tolerance) && lhs.tracking_status == rhs.tracking_status && lhs.scale == rhs.scale && lhs.orientation == rhs.orientation && lhs.error == rhs.error; }; /* Used to sort KeyPoints by coordinates (x, y) */ const auto compare_coords_lt = [](const KeyPoint & lhs, const KeyPoint & rhs) { return std::tie(lhs.x, lhs.y) < std::tie(rhs.x, rhs.y); }; std::sort(first1, last1, compare_coords_lt); std::sort(first2, last2, compare_coords_lt); if(check_mismatches) { ARM_COMPUTE_TEST_INFO("Checking for mismatches: ref count = " << std::distance(first1, last1) << " target count = " << std::distance(first2, last2)); } int64_t num_missing = 0; int64_t num_mismatches = 0; bool rest_missing = false; while(first1 != last1) { if(first2 == last2) { rest_missing = true; break; } if(compare_coords_lt(*first1, *first2)) { ++num_missing; ARM_COMPUTE_TEST_INFO("Key point not found"); ARM_COMPUTE_TEST_INFO("keypoint1 = " << *first1++); framework::ARM_COMPUTE_PRINT_INFO(); } else { if(!compare_coords_lt(*first2, *first1)) // Equal coordinates { if(check_mismatches && !compare_props_eq(*first1, *first2)) // Check other properties { ++num_mismatches; ARM_COMPUTE_TEST_INFO("Mismatching keypoint"); ARM_COMPUTE_TEST_INFO("keypoint1 [ref] = " << *first1); ARM_COMPUTE_TEST_INFO("keypoint2 [tgt] = " << *first2); framework::ARM_COMPUTE_PRINT_INFO(); } ++first1; } ++first2; } } if(rest_missing) { while(first1 != last1) { ++num_missing; ARM_COMPUTE_TEST_INFO("Key point not found"); ARM_COMPUTE_TEST_INFO("keypoint1 = " << *first1++); framework::ARM_COMPUTE_PRINT_INFO(); } } return std::make_pair(num_missing, num_mismatches); } template void validate_keypoints(T target_first, T target_last, U reference_first, U reference_last, V tolerance, float allowed_missing_percentage, float allowed_mismatch_percentage) { const int64_t num_elements_target = std::distance(target_first, target_last); const int64_t num_elements_reference = std::distance(reference_first, reference_last); int64_t num_missing = 0; int64_t num_mismatches = 0; if(num_elements_reference > 0) { std::tie(num_missing, num_mismatches) = compare_keypoints(reference_first, reference_last, target_first, target_last, tolerance); const float percent_missing = static_cast(num_missing) / num_elements_reference * 100.f; const float percent_mismatches = static_cast(num_mismatches) / num_elements_reference * 100.f; ARM_COMPUTE_TEST_INFO(num_missing << " keypoints (" << std::fixed << std::setprecision(2) << percent_missing << "%) in ref are missing from target"); ARM_COMPUTE_TEST_INFO("Missing (not in tgt): " << num_missing << "/" << num_elements_reference << " = " << std::fixed << std::setprecision(2) << percent_missing << "% \tMax allowed: " << allowed_missing_percentage << "%"); ARM_COMPUTE_EXPECT(percent_missing <= allowed_missing_percentage, framework::LogLevel::ERRORS); ARM_COMPUTE_TEST_INFO(num_mismatches << " keypoints (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched"); ARM_COMPUTE_TEST_INFO("Mismatched keypoints: " << num_mismatches << "/" << num_elements_reference << " = " << std::fixed << std::setprecision(2) << percent_mismatches << "% \tMax allowed: " << allowed_mismatch_percentage << "%"); ARM_COMPUTE_EXPECT(percent_mismatches <= allowed_mismatch_percentage, framework::LogLevel::ERRORS); } if(num_elements_target > 0) { // Note: no need to check for mismatches a second time (last argument is 'false') std::tie(num_missing, num_mismatches) = compare_keypoints(target_first, target_last, reference_first, reference_last, tolerance, false); const float percent_missing = static_cast(num_missing) / num_elements_target * 100.f; ARM_COMPUTE_TEST_INFO(num_missing << " keypoints (" << std::fixed << std::setprecision(2) << percent_missing << "%) in target are missing from ref"); ARM_COMPUTE_TEST_INFO("Missing (not in ref): " << num_missing << "/" << num_elements_target << " = " << std::fixed << std::setprecision(2) << percent_missing << "% \tMax allowed: " << allowed_missing_percentage << "%"); ARM_COMPUTE_EXPECT(percent_missing <= allowed_missing_percentage, framework::LogLevel::ERRORS); } } /** Check which detection windows from [first1, last1) are missing in [first2, last2) */ template std::pair compare_detection_windows(T first1, T last1, U first2, U last2, V tolerance) { int64_t num_missing = 0; int64_t num_mismatches = 0; while(first1 != last1) { const auto window = std::find_if(first2, last2, [&](DetectionWindow window) { return window.x == first1->x && window.y == first1->y && window.width == first1->width && window.height == first1->height && window.idx_class == first1->idx_class; }); if(window == last2) { ++num_missing; ARM_COMPUTE_TEST_INFO("Detection window not found " << *first1) framework::ARM_COMPUTE_PRINT_INFO(); } else { if(!compare(window->score, first1->score, tolerance)) { ++num_mismatches; ARM_COMPUTE_TEST_INFO("Mismatching detection window") ARM_COMPUTE_TEST_INFO("detection window 1= " << *first1) ARM_COMPUTE_TEST_INFO("detection window 2= " << *window) framework::ARM_COMPUTE_PRINT_INFO(); } } ++first1; } return std::make_pair(num_missing, num_mismatches); } template void validate_detection_windows(T target_first, T target_last, U reference_first, U reference_last, V tolerance, float allowed_missing_percentage, float allowed_mismatch_percentage) { const int64_t num_elements_target = std::distance(target_first, target_last); const int64_t num_elements_reference = std::distance(reference_first, reference_last); int64_t num_missing = 0; int64_t num_mismatches = 0; if(num_elements_reference > 0) { std::tie(num_missing, num_mismatches) = compare_detection_windows(reference_first, reference_last, target_first, target_last, tolerance); const float percent_missing = static_cast(num_missing) / num_elements_reference * 100.f; const float percent_mismatches = static_cast(num_mismatches) / num_elements_reference * 100.f; ARM_COMPUTE_TEST_INFO(num_missing << " detection windows (" << std::fixed << std::setprecision(2) << percent_missing << "%) are missing in target"); ARM_COMPUTE_EXPECT(percent_missing <= allowed_missing_percentage, framework::LogLevel::ERRORS); ARM_COMPUTE_TEST_INFO(num_mismatches << " detection windows (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched"); ARM_COMPUTE_EXPECT(percent_mismatches <= allowed_mismatch_percentage, framework::LogLevel::ERRORS); } if(num_elements_target > 0) { std::tie(num_missing, num_mismatches) = compare_detection_windows(target_first, target_last, reference_first, reference_last, tolerance); const float percent_missing = static_cast(num_missing) / num_elements_target * 100.f; ARM_COMPUTE_TEST_INFO(num_missing << " detection windows (" << std::fixed << std::setprecision(2) << percent_missing << "%) are not part of target"); ARM_COMPUTE_EXPECT(percent_missing <= allowed_missing_percentage, framework::LogLevel::ERRORS); } } } // namespace validation } // namespace test } // namespace arm_compute #endif /* __ARM_COMPUTE_TEST_REFERENCE_VALIDATION_H__ */