/* * Copyright (c) 2017, 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Validation.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/runtime/Tensor.h" #include #include #include #include namespace arm_compute { namespace test { namespace validation { namespace { /** Get the data from *ptr after casting according to @p data_type and then convert the data to double. * * @param[in] ptr Pointer to value. * @param[in] data_type Data type of both values. * * @return The data from the ptr after converted to double. */ double get_double_data(const void *ptr, DataType data_type) { if(ptr == nullptr) { ARM_COMPUTE_ERROR("Can't dereference a null pointer!"); } switch(data_type) { case DataType::U8: return *reinterpret_cast(ptr); case DataType::S8: return *reinterpret_cast(ptr); case DataType::U16: return *reinterpret_cast(ptr); case DataType::S16: return *reinterpret_cast(ptr); case DataType::U32: return *reinterpret_cast(ptr); case DataType::S32: return *reinterpret_cast(ptr); case DataType::U64: return *reinterpret_cast(ptr); case DataType::S64: return *reinterpret_cast(ptr); case DataType::F16: return *reinterpret_cast(ptr); case DataType::F32: return *reinterpret_cast(ptr); case DataType::F64: return *reinterpret_cast(ptr); case DataType::SIZET: return *reinterpret_cast(ptr); default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } void check_border_element(const IAccessor &tensor, const Coordinates &id, const BorderMode &border_mode, const void *border_value, int64_t &num_elements, int64_t &num_mismatches) { const size_t channel_size = element_size_from_data_type(tensor.data_type()); const auto ptr = static_cast(tensor(id)); if(border_mode == BorderMode::REPLICATE) { Coordinates border_id{ id }; if(id.x() < 0) { border_id.set(0, 0); } else if(static_cast(id.x()) >= tensor.shape().x()) { border_id.set(0, tensor.shape().x() - 1); } if(id.y() < 0) { border_id.set(1, 0); } else if(static_cast(id.y()) >= tensor.shape().y()) { border_id.set(1, tensor.shape().y() - 1); } border_value = tensor(border_id); } // Iterate over all channels within one element for(int channel = 0; channel < tensor.num_channels(); ++channel) { const size_t channel_offset = channel * channel_size; const double target = get_double_data(ptr + channel_offset, tensor.data_type()); const double reference = get_double_data(static_cast(border_value) + channel_offset, tensor.data_type()); if(!compare>(target, reference)) { ARM_COMPUTE_TEST_INFO("id = " << id); ARM_COMPUTE_TEST_INFO("channel = " << channel); ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << target); ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << reference); ARM_COMPUTE_EXPECT_EQUAL(target, reference, framework::LogLevel::DEBUG); ++num_mismatches; } ++num_elements; } } } // namespace void validate(const arm_compute::ValidRegion ®ion, const arm_compute::ValidRegion &reference) { ARM_COMPUTE_EXPECT_EQUAL(region.anchor.num_dimensions(), reference.anchor.num_dimensions(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(region.shape.num_dimensions(), reference.shape.num_dimensions(), framework::LogLevel::ERRORS); for(unsigned int d = 0; d < region.anchor.num_dimensions(); ++d) { ARM_COMPUTE_EXPECT_EQUAL(region.anchor[d], reference.anchor[d], framework::LogLevel::ERRORS); } for(unsigned int d = 0; d < region.shape.num_dimensions(); ++d) { ARM_COMPUTE_EXPECT_EQUAL(region.shape[d], reference.shape[d], framework::LogLevel::ERRORS); } } void validate(const arm_compute::PaddingSize &padding, const arm_compute::PaddingSize &reference) { ARM_COMPUTE_EXPECT_EQUAL(padding.top, reference.top, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(padding.right, reference.right, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(padding.bottom, reference.bottom, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(padding.left, reference.left, framework::LogLevel::ERRORS); } void validate(const arm_compute::PaddingSize &padding, const arm_compute::PaddingSize &width_reference, const arm_compute::PaddingSize &height_reference) { ARM_COMPUTE_EXPECT_EQUAL(padding.top, height_reference.top, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(padding.right, width_reference.right, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(padding.bottom, height_reference.bottom, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT_EQUAL(padding.left, width_reference.left, framework::LogLevel::ERRORS); } void validate(const IAccessor &tensor, const void *reference_value) { ARM_COMPUTE_ASSERT(reference_value != nullptr); int64_t num_mismatches = 0; int64_t num_elements = 0; const size_t channel_size = element_size_from_data_type(tensor.data_type()); // Iterate over all elements, e.g. U8, S16, RGB888, ... for(int element_idx = 0; element_idx < tensor.num_elements(); ++element_idx) { const Coordinates id = index2coord(tensor.shape(), element_idx); const auto ptr = static_cast(tensor(id)); // Iterate over all channels within one element for(int channel = 0; channel < tensor.num_channels(); ++channel) { const size_t channel_offset = channel * channel_size; const double target = get_double_data(ptr + channel_offset, tensor.data_type()); const double reference = get_double_data(reference_value, tensor.data_type()); if(!compare>(target, reference)) { ARM_COMPUTE_TEST_INFO("id = " << id); ARM_COMPUTE_TEST_INFO("channel = " << channel); ARM_COMPUTE_TEST_INFO("target = " << std::setprecision(5) << target); ARM_COMPUTE_TEST_INFO("reference = " << std::setprecision(5) << reference); ARM_COMPUTE_EXPECT_EQUAL(target, reference, framework::LogLevel::DEBUG); ++num_mismatches; } ++num_elements; } } if(num_elements > 0) { const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched"); ARM_COMPUTE_EXPECT_EQUAL(num_mismatches, 0, framework::LogLevel::ERRORS); } } void validate(const IAccessor &tensor, BorderSize border_size, const BorderMode &border_mode, const void *border_value) { if(border_mode == BorderMode::UNDEFINED) { return; } else if(border_mode == BorderMode::CONSTANT) { ARM_COMPUTE_ASSERT(border_value != nullptr); } int64_t num_mismatches = 0; int64_t num_elements = 0; const int slice_size = tensor.shape()[0] * tensor.shape()[1]; for(int element_idx = 0; element_idx < tensor.num_elements(); element_idx += slice_size) { Coordinates id = index2coord(tensor.shape(), element_idx); // Top border for(int y = -border_size.top; y < 0; ++y) { id.set(1, y); for(int x = -border_size.left; x < static_cast(tensor.shape()[0]) + static_cast(border_size.right); ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } } // Bottom border for(int y = tensor.shape()[1]; y < static_cast(tensor.shape()[1]) + static_cast(border_size.bottom); ++y) { id.set(1, y); for(int x = -border_size.left; x < static_cast(tensor.shape()[0]) + static_cast(border_size.right); ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } } // Left/right border for(int y = 0; y < static_cast(tensor.shape()[1]); ++y) { id.set(1, y); // Left border for(int x = -border_size.left; x < 0; ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } // Right border for(int x = tensor.shape()[0]; x < static_cast(tensor.shape()[0]) + static_cast(border_size.right); ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } } } if(num_elements > 0) { const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched"); ARM_COMPUTE_EXPECT_EQUAL(num_mismatches, 0, framework::LogLevel::ERRORS); } } void validate(std::vector classified_labels, std::vector expected_labels) { ARM_COMPUTE_EXPECT_EQUAL(classified_labels.size(), expected_labels.size(), framework::LogLevel::ERRORS); int64_t num_mismatches = 0; const int num_elements = std::min(classified_labels.size(), expected_labels.size()); for(int i = 0; i < num_elements; ++i) { if(classified_labels[i] != expected_labels[i]) { ++num_mismatches; ARM_COMPUTE_EXPECT_EQUAL(classified_labels[i], expected_labels[i], framework::LogLevel::DEBUG); } } if(num_elements > 0) { const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; ARM_COMPUTE_TEST_INFO(num_mismatches << " values (" << std::fixed << std::setprecision(2) << percent_mismatches << "%) mismatched"); ARM_COMPUTE_EXPECT_EQUAL(num_mismatches, 0, framework::LogLevel::ERRORS); } } } // namespace validation } // namespace test } // namespace arm_compute