/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Validation.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/FixedPoint.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/runtime/Tensor.h" #include "tests/IAccessor.h" #include "tests/RawTensor.h" #include "tests/TypePrinter.h" #include "tests/Utils.h" #include "tests/validation/half.h" #include #include #include #include #include namespace arm_compute { namespace test { namespace validation { namespace { /** Get the data from *ptr after casting according to @p data_type and then convert the data to double. * * @param[in] ptr Pointer to value. * @param[in] data_type Data type of both values. * * @return The data from the ptr after converted to double. */ double get_double_data(const void *ptr, DataType data_type) { if(ptr == nullptr) { ARM_COMPUTE_ERROR("Can't dereference a null pointer!"); } switch(data_type) { case DataType::U8: return *reinterpret_cast(ptr); case DataType::S8: return *reinterpret_cast(ptr); case DataType::QS8: return *reinterpret_cast(ptr); case DataType::U16: return *reinterpret_cast(ptr); case DataType::S16: return *reinterpret_cast(ptr); case DataType::QS16: return *reinterpret_cast(ptr); case DataType::U32: return *reinterpret_cast(ptr); case DataType::S32: return *reinterpret_cast(ptr); case DataType::U64: return *reinterpret_cast(ptr); case DataType::S64: return *reinterpret_cast(ptr); case DataType::F16: return *reinterpret_cast(ptr); case DataType::F32: return *reinterpret_cast(ptr); case DataType::F64: return *reinterpret_cast(ptr); case DataType::SIZET: return *reinterpret_cast(ptr); default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } bool is_equal(double target, double ref, double max_absolute_error = std::numeric_limits::epsilon(), double max_relative_error = 0.0001f) { if(!std::isfinite(target) || !std::isfinite(ref)) { return false; } // No need further check if they are equal if(ref == target) { return true; } // Need this check for the situation when the two values close to zero but have different sign if(std::abs(std::abs(ref) - std::abs(target)) <= max_absolute_error) { return true; } double relative_error = 0; if(std::abs(target) > std::abs(ref)) { relative_error = std::abs((target - ref) / target); } else { relative_error = std::abs((ref - target) / ref); } return relative_error <= max_relative_error; } void check_border_element(const IAccessor &tensor, const Coordinates &id, const BorderMode &border_mode, const void *border_value, int64_t &num_elements, int64_t &num_mismatches) { const size_t channel_size = element_size_from_data_type(tensor.data_type()); const auto ptr = static_cast(tensor(id)); if(border_mode == BorderMode::REPLICATE) { Coordinates border_id{ id }; border_id.set(1, 0); border_value = tensor(border_id); } // Iterate over all channels within one element for(int channel = 0; channel < tensor.num_channels(); ++channel) { const size_t channel_offset = channel * channel_size; const double target = get_double_data(ptr + channel_offset, tensor.data_type()); const double ref = get_double_data(static_cast(border_value) + channel_offset, tensor.data_type()); const bool equal = is_equal(target, ref); BOOST_TEST_INFO("id = " << id); BOOST_TEST_INFO("channel = " << channel); BOOST_TEST_INFO("reference = " << std::setprecision(5) << ref); BOOST_TEST_INFO("target = " << std::setprecision(5) << target); BOOST_TEST_WARN(equal); if(!equal) { ++num_mismatches; } ++num_elements; } } void check_single_element(const Coordinates &id, const IAccessor &tensor, const RawTensor &reference, float tolerance_value, uint64_t wrap_range, int min_channels, size_t channel_size, int64_t &num_mismatches, int64_t &num_elements) { const auto ptr = static_cast(tensor(id)); const auto ref_ptr = static_cast(reference(id)); // Iterate over all channels within one element for(int channel = 0; channel < min_channels; ++channel) { const size_t channel_offset = channel * channel_size; const double target = get_double_data(ptr + channel_offset, reference.data_type()); const double ref = get_double_data(ref_ptr + channel_offset, reference.data_type()); bool equal = is_equal(target, ref, tolerance_value); if(wrap_range != 0 && !equal) { equal = is_equal(target, ref, wrap_range - tolerance_value); } if(!equal) { BOOST_TEST_INFO("id = " << id); BOOST_TEST_INFO("channel = " << channel); BOOST_TEST_INFO("reference = " << std::setprecision(5) << ref); BOOST_TEST_INFO("target = " << std::setprecision(5) << target); BOOST_TEST_WARN(equal); ++num_mismatches; } ++num_elements; } } } // namespace void validate(const arm_compute::ValidRegion ®ion, const arm_compute::ValidRegion &reference) { BOOST_TEST(region.anchor.num_dimensions() == reference.anchor.num_dimensions()); BOOST_TEST(region.shape.num_dimensions() == reference.shape.num_dimensions()); for(unsigned int d = 0; d < region.anchor.num_dimensions(); ++d) { BOOST_TEST(region.anchor[d] == reference.anchor[d]); } for(unsigned int d = 0; d < region.shape.num_dimensions(); ++d) { BOOST_TEST(region.shape[d] == reference.shape[d]); } } void validate(const arm_compute::PaddingSize &padding, const arm_compute::PaddingSize &reference) { BOOST_TEST(padding.top == reference.top); BOOST_TEST(padding.right == reference.right); BOOST_TEST(padding.bottom == reference.bottom); BOOST_TEST(padding.left == reference.left); } void validate(const IAccessor &tensor, const RawTensor &reference, float tolerance_value, float tolerance_number, uint64_t wrap_range) { // Validate with valid region covering the entire shape validate(tensor, reference, shape_to_valid_region(tensor.shape()), tolerance_value, tolerance_number, wrap_range); } void validate(const IAccessor &tensor, const RawTensor &reference, const ValidRegion &valid_region, float tolerance_value, float tolerance_number, uint64_t wrap_range) { int64_t num_mismatches = 0; int64_t num_elements = 0; BOOST_TEST(tensor.element_size() == reference.element_size()); BOOST_TEST(tensor.format() == reference.format()); BOOST_TEST(tensor.data_type() == reference.data_type()); BOOST_TEST(tensor.num_channels() == reference.num_channels()); BOOST_TEST(compare_dimensions(tensor.shape(), reference.shape())); const int min_elements = std::min(tensor.num_elements(), reference.num_elements()); const int min_channels = std::min(tensor.num_channels(), reference.num_channels()); const size_t channel_size = element_size_from_data_type(reference.data_type()); // Iterate over all elements within valid region, e.g. U8, S16, RGB888, ... for(int element_idx = 0; element_idx < min_elements; ++element_idx) { const Coordinates id = index2coord(reference.shape(), element_idx); if(is_in_valid_region(valid_region, id)) { check_single_element(id, tensor, reference, tolerance_value, wrap_range, min_channels, channel_size, num_mismatches, num_elements); } } const int64_t absolute_tolerance_number = tolerance_number * num_elements; const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; BOOST_TEST(num_mismatches <= absolute_tolerance_number, num_mismatches << " values (" << std::setprecision(2) << percent_mismatches << "%) mismatched (maximum tolerated " << std::setprecision(2) << tolerance_number << "%)"); } void validate(const IAccessor &tensor, const void *reference_value) { BOOST_TEST_REQUIRE((reference_value != nullptr)); int64_t num_mismatches = 0; int64_t num_elements = 0; const size_t channel_size = element_size_from_data_type(tensor.data_type()); // Iterate over all elements, e.g. U8, S16, RGB888, ... for(int element_idx = 0; element_idx < tensor.num_elements(); ++element_idx) { const Coordinates id = index2coord(tensor.shape(), element_idx); const auto ptr = static_cast(tensor(id)); // Iterate over all channels within one element for(int channel = 0; channel < tensor.num_channels(); ++channel) { const size_t channel_offset = channel * channel_size; const double target = get_double_data(ptr + channel_offset, tensor.data_type()); const double ref = get_double_data(reference_value, tensor.data_type()); const bool equal = is_equal(target, ref); BOOST_TEST_INFO("id = " << id); BOOST_TEST_INFO("channel = " << channel); BOOST_TEST_INFO("reference = " << std::setprecision(5) << ref); BOOST_TEST_INFO("target = " << std::setprecision(5) << target); BOOST_TEST_WARN(equal); if(!equal) { ++num_mismatches; } ++num_elements; } } const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; BOOST_TEST(num_mismatches == 0, num_mismatches << " values (" << std::setprecision(2) << percent_mismatches << "%) mismatched"); } void validate(const IAccessor &tensor, BorderSize border_size, const BorderMode &border_mode, const void *border_value) { if(border_mode == BorderMode::UNDEFINED) { return; } else if(border_mode == BorderMode::CONSTANT) { BOOST_TEST((border_value != nullptr)); } int64_t num_mismatches = 0; int64_t num_elements = 0; const int slice_size = tensor.shape()[0] * tensor.shape()[1]; for(int element_idx = 0; element_idx < tensor.num_elements(); element_idx += slice_size) { Coordinates id = index2coord(tensor.shape(), element_idx); // Top border for(int y = -border_size.top; y < 0; ++y) { id.set(1, y); for(int x = -border_size.left; x < static_cast(tensor.shape()[0]) + static_cast(border_size.right); ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } } // Bottom border for(int y = tensor.shape()[1]; y < static_cast(tensor.shape()[1]) + static_cast(border_size.bottom); ++y) { id.set(1, y); for(int x = -border_size.left; x < static_cast(tensor.shape()[0]) + static_cast(border_size.right); ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } } // Left/right border for(int y = 0; y < static_cast(tensor.shape()[1]); ++y) { id.set(1, y); // Left border for(int x = -border_size.left; x < 0; ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } // Right border for(int x = tensor.shape()[0]; x < static_cast(tensor.shape()[0]) + static_cast(border_size.right); ++x) { id.set(0, x); check_border_element(tensor, id, border_mode, border_value, num_elements, num_mismatches); } } } const float percent_mismatches = static_cast(num_mismatches) / num_elements * 100.f; BOOST_TEST(num_mismatches == 0, num_mismatches << " values (" << std::setprecision(2) << percent_mismatches << "%) mismatched"); } void validate(std::vector classified_labels, std::vector expected_labels) { ARM_COMPUTE_UNUSED(classified_labels); ARM_COMPUTE_UNUSED(expected_labels); BOOST_TEST(expected_labels.size() != 0); BOOST_TEST(classified_labels.size() == expected_labels.size()); for(unsigned int i = 0; i < expected_labels.size(); ++i) { BOOST_TEST(classified_labels[i] == expected_labels[i]); } } void validate(float target, float ref, float tolerance_abs_error, float tolerance_relative_error) { const bool equal = is_equal(target, ref, tolerance_abs_error, tolerance_relative_error); BOOST_TEST_INFO("reference = " << std::setprecision(5) << ref); BOOST_TEST_INFO("target = " << std::setprecision(5) << target); BOOST_TEST(equal); } } // namespace validation } // namespace test } // namespace arm_compute