/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ReferenceCPP.h" #include "TensorFactory.h" #include "TensorOperations.h" #include "TensorVisitors.h" #include "TypePrinter.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/runtime/Tensor.h" #include "boost_wrapper.h" #include #include #include #include #include using namespace arm_compute::test::validation::tensor_visitors; namespace arm_compute { namespace test { namespace validation { // Sobel 3x3 void ReferenceCPP::sobel_3x3(RawTensor &src, RawTensor &dst_x, RawTensor &dst_y, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst_x.data_type() != DataType::S16 || dst_y.data_type() != DataType::S16); Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor dx(dst_x.shape(), dst_x.data_type(), dst_x.fixed_point_position(), reinterpret_cast(dst_x.data())); Tensor dy(dst_y.shape(), dst_y.data_type(), dst_y.fixed_point_position(), reinterpret_cast(dst_y.data())); tensor_operations::sobel_3x3(s, dx, dy, border_mode, constant_border_value); } // Sobel 5x5 void ReferenceCPP::sobel_5x5(RawTensor &src, RawTensor &dst_x, RawTensor &dst_y, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst_x.data_type() != DataType::S16 || dst_y.data_type() != DataType::S16); Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor dx(dst_x.shape(), dst_x.data_type(), dst_x.fixed_point_position(), reinterpret_cast(dst_x.data())); Tensor dy(dst_y.shape(), dst_y.data_type(), dst_y.fixed_point_position(), reinterpret_cast(dst_y.data())); tensor_operations::sobel_5x5(s, dx, dy, border_mode, constant_border_value); } // Minimum maximum location void ReferenceCPP::min_max_location(const RawTensor &src, int32_t &min, int32_t &max, IArray &min_loc, IArray &max_loc, uint32_t &min_count, uint32_t &max_count) { const TensorVariant s = TensorFactory::get_tensor(src); boost::apply_visitor(tensor_visitors::min_max_location_visitor(min, max, min_loc, max_loc, min_count, max_count), s); } // Absolute difference void ReferenceCPP::absolute_difference(const RawTensor &src1, const RawTensor &src2, RawTensor &dst) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(absolute_difference_visitor(), s1, s2, d); } // Mean and standard deviation void ReferenceCPP::mean_and_standard_deviation(const RawTensor &src, float &mean, float &std_dev) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); tensor_operations::mean_and_standard_deviation(s, mean, std_dev); } // Integral image void ReferenceCPP::integral_image(const RawTensor &src, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U32); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::integral_image(s, d); } // Accumulate void ReferenceCPP::accumulate(const RawTensor &src, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::S16); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::accumulate(s, d); } // Accumulate squared void ReferenceCPP::accumulate_squared(const RawTensor &src, RawTensor &dst, uint32_t shift) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::S16); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::accumulate_squared(s, d, shift); } // Accumulate weighted void ReferenceCPP::accumulate_weighted(const RawTensor &src, RawTensor &dst, float alpha) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::accumulate_weighted(s, d, alpha); } // Arithmetic addition void ReferenceCPP::arithmetic_addition(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, ConvertPolicy convert_policy) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(arithmetic_addition_visitor(convert_policy), s1, s2, d); } // Arithmetic subtraction void ReferenceCPP::arithmetic_subtraction(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, ConvertPolicy convert_policy) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(arithmetic_subtraction_visitor(convert_policy), s1, s2, d); } // Bitwise and void ReferenceCPP::bitwise_and(const RawTensor &src1, const RawTensor &src2, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src1.data_type() != DataType::U8 || src2.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s1(src1.shape(), src1.data_type(), src1.fixed_point_position(), reinterpret_cast(src1.data())); const Tensor s2(src2.shape(), src2.data_type(), src2.fixed_point_position(), reinterpret_cast(src2.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::bitwise_and(s1, s2, d); } // Bitwise or void ReferenceCPP::bitwise_or(const RawTensor &src1, const RawTensor &src2, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src1.data_type() != DataType::U8 || src2.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s1(src1.shape(), src1.data_type(), src1.fixed_point_position(), reinterpret_cast(src1.data())); const Tensor s2(src2.shape(), src2.data_type(), src2.fixed_point_position(), reinterpret_cast(src2.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::bitwise_or(s1, s2, d); } // Bitwise xor void ReferenceCPP::bitwise_xor(const RawTensor &src1, const RawTensor &src2, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src1.data_type() != DataType::U8 || src2.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s1(src1.shape(), src1.data_type(), src1.fixed_point_position(), reinterpret_cast(src1.data())); const Tensor s2(src2.shape(), src2.data_type(), src2.fixed_point_position(), reinterpret_cast(src2.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::bitwise_xor(s1, s2, d); } // Bitwise not void ReferenceCPP::bitwise_not(const RawTensor &src, RawTensor &dst) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::bitwise_not(s, d); } // Box3x3 filter void ReferenceCPP::box3x3(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::box3x3(s, d, border_mode, constant_border_value); } // Depth conversion void ReferenceCPP::depth_convert(const RawTensor &src, RawTensor &dst, ConvertPolicy policy, uint32_t shift) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::depth_convert_visitor(policy, shift), s, d); } // Gaussian3x3 filter void ReferenceCPP::gaussian3x3(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::gaussian3x3(s, d, border_mode, constant_border_value); } // Gaussian5x5 filter void ReferenceCPP::gaussian5x5(const RawTensor &src, RawTensor &dst, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::gaussian5x5(s, d, border_mode, constant_border_value); } // GEMM void ReferenceCPP::gemm(const RawTensor &src1, const RawTensor &src2, const RawTensor &src3, RawTensor &dst, float alpha, float beta) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); const TensorVariant s3 = TensorFactory::get_tensor(src3); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::gemm_visitor(s1, s2, s3, alpha, beta), d); } // Non linear filter void ReferenceCPP::non_linear_filter(const RawTensor &src, RawTensor &dst, NonLinearFilterFunction function, unsigned int mask_size, MatrixPattern pattern, const uint8_t *mask, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::non_linear_filter(s, d, function, mask_size, pattern, mask, border_mode, constant_border_value); } // Pixel-wise multiplication void ReferenceCPP::pixel_wise_multiplication(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(pixel_wise_multiplication_visitor(scale, convert_policy, rounding_policy), s1, s2, d); } // Fixed-point Pixel-wise multiplication void ReferenceCPP::fixed_point_pixel_wise_multiplication(const RawTensor &src1, const RawTensor &src2, RawTensor &dst, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy) { const TensorVariant s1 = TensorFactory::get_tensor(src1); const TensorVariant s2 = TensorFactory::get_tensor(src2); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::fixed_point_pixel_wise_multiplication_visitor(s1, s2, scale, convert_policy, rounding_policy), d); } // Table lookup template void ReferenceCPP::table_lookup(const RawTensor &src, RawTensor &dst, std::map &lut) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::table_lookup(s, lut), d); } #ifndef DOXYGEN_SKIP_THIS template void arm_compute::test::validation::ReferenceCPP::table_lookup(const RawTensor &src, RawTensor &dst, std::map &lut); template void arm_compute::test::validation::ReferenceCPP::table_lookup(const RawTensor &src, RawTensor &dst, std::map &lut); #endif /* DOXYGEN_SKIP_THIS */ // Threshold void ReferenceCPP::threshold(const RawTensor &src, RawTensor &dst, uint8_t threshold, uint8_t false_value, uint8_t true_value, ThresholdType type, uint8_t upper) { ARM_COMPUTE_ERROR_ON(src.data_type() != DataType::U8 || dst.data_type() != DataType::U8); const Tensor s(src.shape(), src.data_type(), src.fixed_point_position(), reinterpret_cast(src.data())); Tensor d(dst.shape(), dst.data_type(), dst.fixed_point_position(), reinterpret_cast(dst.data())); tensor_operations::threshold(s, d, threshold, false_value, true_value, type, upper); } // Activation layer void ReferenceCPP::activation_layer(const RawTensor &input, RawTensor &output, ActivationLayerInfo act_info) { const TensorVariant s = TensorFactory::get_tensor(input); TensorVariant d = TensorFactory::get_tensor(output); boost::apply_visitor(tensor_visitors::activation_layer_visitor(s, act_info), d); } // Batch Normalization Layer void ReferenceCPP::batch_normalization_layer(const RawTensor &src, RawTensor &dst, const RawTensor &mean, const RawTensor &var, const RawTensor &beta, const RawTensor &gamma, float epsilon, int fixed_point_position) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); const TensorVariant m = TensorFactory::get_tensor(mean); const TensorVariant v = TensorFactory::get_tensor(var); const TensorVariant b = TensorFactory::get_tensor(beta); const TensorVariant g = TensorFactory::get_tensor(gamma); boost::apply_visitor(tensor_visitors::batch_normalization_layer_visitor(s, m, v, b, g, epsilon, fixed_point_position), d); } // Convolution Layer void ReferenceCPP::convolution_layer(const RawTensor &src, const RawTensor &weights, const RawTensor &bias, RawTensor &dst, const PadStrideInfo &conv_info) { const TensorVariant s = TensorFactory::get_tensor(src); const TensorVariant w = TensorFactory::get_tensor(weights); const TensorVariant b = TensorFactory::get_tensor(bias); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::convolution_layer_visitor(s, w, b, conv_info), d); } // Depth concatenate layer void ReferenceCPP::depth_concatenate_layer(const std::vector> &srcs, RawTensor &dst) { std::vector ss; ss.resize(srcs.size()); std::transform(srcs.begin(), srcs.end(), ss.begin(), [](std::unique_ptr const & t) { return TensorFactory::get_tensor(*t); }); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::depth_concatenate_layer_visitor(ss), d); } // Fully connected layer void ReferenceCPP::fully_connected_layer(const RawTensor &src, const RawTensor &weights, const RawTensor &bias, RawTensor &dst) { const TensorVariant s = TensorFactory::get_tensor(src); const TensorVariant w = TensorFactory::get_tensor(weights); const TensorVariant b = TensorFactory::get_tensor(bias); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::fully_connected_layer_visitor(s, w, b), d); } // Pooling Layer void ReferenceCPP::pooling_layer(const RawTensor &src, RawTensor &dst, PoolingLayerInfo pool_info, int fixed_point_position) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::pooling_layer_visitor(s, pool_info, fixed_point_position), d); } // ROI Pooling Layer void ReferenceCPP::roi_pooling_layer(const RawTensor &src, RawTensor &dst, const std::vector &rois, const ROIPoolingLayerInfo &pool_info) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::roi_pooling_layer_visitor(s, rois, pool_info), d); } // Fixed point operation void ReferenceCPP::fixed_point_operation(const RawTensor &src, RawTensor &dst, FixedPointOp op) { const TensorVariant s = TensorFactory::get_tensor(src); TensorVariant d = TensorFactory::get_tensor(dst); boost::apply_visitor(tensor_visitors::fixed_point_operation_visitor(s, op), d); } } // namespace validation } // namespace test } // namespace arm_compute