/* * Copyright (c) 2019-2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/RuntimeContext.h" #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h" #include "arm_compute/runtime/SchedulerFactory.h" #include "arm_compute/runtime/Tensor.h" #include "tests/Globals.h" #include "tests/NEON/Accessor.h" #include "tests/Utils.h" #include "tests/framework/Asserts.h" #include "tests/framework/Macros.h" #include "tests/validation/Validation.h" #include "tests/validation/reference/ActivationLayer.h" #include #include #if !defined(BARE_METAL) #include #endif // !defined(BARE_METAL) namespace arm_compute { namespace test { namespace validation { TEST_SUITE(NEON) TEST_SUITE(UNIT) TEST_SUITE(RuntimeContext) TEST_CASE(Scheduler, framework::DatasetMode::ALL) { using namespace arm_compute; // Create a runtime context object RuntimeContext ctx; // Check if it's been initialised properly ARM_COMPUTE_EXPECT(ctx.scheduler() != nullptr, framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(ctx.asset_manager() == nullptr, framework::LogLevel::ERRORS); // Create a Scheduler auto scheduler = SchedulerFactory::create(); ctx.set_scheduler(scheduler.get()); // Check if the scheduler has been properly setup ARM_COMPUTE_EXPECT(ctx.scheduler() != nullptr, framework::LogLevel::ERRORS); // Create a new activation function NEActivationLayer act_layer(&ctx); Tensor src = create_tensor(TensorShape(32, 32), DataType::F32, 1); Tensor dst = create_tensor(TensorShape(32, 32), DataType::F32, 1); act_layer.configure(&src, &dst, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR)); ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors src.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS); float min_bound = 0; float max_bound = 0; std::tie(min_bound, max_bound) = get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction::LINEAR, DataType::F32); std::uniform_real_distribution<> distribution(min_bound, max_bound); library->fill(Accessor(src), distribution, 0); // Compute function act_layer.run(); } #if !defined(BARE_METAL) // This test tries scheduling work concurrently from two independent threads TEST_CASE(MultipleThreadedScheduller, framework::DatasetMode::ALL) { // Create a runtime context object for thread 1 RuntimeContext ctx1; // Create a runtime context object for thread 2 RuntimeContext ctx2; // Create a new activation function NEActivationLayer act_layer_thread0(&ctx1); NEActivationLayer act_layer_thread1(&ctx2); const TensorShape tensor_shape(128, 128); Tensor src_t0 = create_tensor(tensor_shape, DataType::F32, 1); Tensor dst_t0 = create_tensor(tensor_shape, DataType::F32, 1); Tensor src_t1 = create_tensor(tensor_shape, DataType::F32, 1); Tensor dst_t1 = create_tensor(tensor_shape, DataType::F32, 1); ActivationLayerInfo activation_info(ActivationLayerInfo::ActivationFunction::LINEAR); act_layer_thread0.configure(&src_t0, &dst_t0, activation_info); act_layer_thread1.configure(&src_t1, &dst_t1, activation_info); ARM_COMPUTE_EXPECT(src_t0.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst_t0.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(src_t1.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(dst_t1.info()->is_resizable(), framework::LogLevel::ERRORS); // Allocate tensors src_t0.allocator()->allocate(); dst_t0.allocator()->allocate(); src_t1.allocator()->allocate(); dst_t1.allocator()->allocate(); ARM_COMPUTE_EXPECT(!src_t0.info()->is_resizable(), framework::LogLevel::ERRORS); ARM_COMPUTE_EXPECT(!src_t1.info()->is_resizable(), framework::LogLevel::ERRORS); float min_bound = 0; float max_bound = 0; std::tie(min_bound, max_bound) = get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction::LINEAR, DataType::F32); std::uniform_real_distribution<> distribution(min_bound, max_bound); library->fill(Accessor(src_t0), distribution, 0); library->fill(Accessor(src_t1), distribution, 0); std::thread neon_thread1([&] { act_layer_thread0.run(); }); std::thread neon_thread2([&] { act_layer_thread1.run(); }); neon_thread1.join(); neon_thread2.join(); Window window; window.use_tensor_dimensions(dst_t0.info()->tensor_shape()); Iterator t0_it(&dst_t0, window); Iterator t1_it(&dst_t1, window); execute_window_loop(window, [&](const Coordinates &) { const bool match = (*reinterpret_cast(t0_it.ptr()) == *reinterpret_cast(t1_it.ptr())); ARM_COMPUTE_EXPECT(match, framework::LogLevel::ERRORS); }, t0_it, t1_it); } #endif // !defined(BARE_METAL) TEST_SUITE_END() // RuntimeContext TEST_SUITE_END() // UNIT TEST_SUITE_END() // NEON } // namespace validation } // namespace test } // namespace arm_compute