/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Globals.h" #include "NEON/NEAccessor.h" #include "TensorLibrary.h" #include "TypePrinter.h" #include "Utils.h" #include "validation/Datasets.h" #include "validation/Reference.h" #include "validation/Validation.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "arm_compute/runtime/NEON/functions/NEDirectConvolutionLayer.h" #include "arm_compute/runtime/Tensor.h" #include "arm_compute/runtime/TensorAllocator.h" #include "boost_wrapper.h" #include #include #include using namespace arm_compute; using namespace arm_compute::test; using namespace arm_compute::test::neon; using namespace arm_compute::test::validation; namespace { const float tolerance_fp = 1e-3f; /**< Tolerance for floating point tests */ const float tolerance_qs8 = 1; /**< Tolerance for fixed point tests */ /** Compute NEON direct convolution layer function. * * @param[in] src_shape Shape of the input tensor. * @param[in] weights_shape Shape of the weights. * @param[in] bias_shape Shape of the bias tensor. * @param[in] dst_shape Shape of the output tensor. * @param[in] dt Data type of input, convolution matrix and output tensors. * @param[in] conv_info Padding and stride information. * @param[in] fixed_point_position (Optional) Number of bits for the fractional part of the fixed point numbers * * @return Computed output tensor. */ Tensor compute_convolution_layer(const TensorShape &src_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &dst_shape, DataType dt, PadStrideInfo conv_info, int fixed_point_position = 0) { // Create tensors Tensor src = create_tensor(src_shape, dt, 1, fixed_point_position); Tensor weights = create_tensor(weights_shape, dt, 1, fixed_point_position); Tensor bias = create_tensor(bias_shape, dt, 1, fixed_point_position); Tensor dst = create_tensor(dst_shape, dt, 1, fixed_point_position); // Create and configure function NEDirectConvolutionLayer conv_layer; conv_layer.configure(&src, &weights, &bias, &dst, conv_info); // Allocate tensors src.allocator()->allocate(); weights.allocator()->allocate(); bias.allocator()->allocate(); dst.allocator()->allocate(); BOOST_TEST(!src.info()->is_resizable()); BOOST_TEST(!weights.info()->is_resizable()); BOOST_TEST(!bias.info()->is_resizable()); BOOST_TEST(!dst.info()->is_resizable()); // Fill tensors if(dt == DataType::F32) { std::uniform_real_distribution<> distribution(-1.f, 1.f); library->fill(NEAccessor(src), distribution, 0); library->fill(NEAccessor(weights), distribution, 1); library->fill(NEAccessor(bias), distribution, 2); } else { library->fill_tensor_uniform(NEAccessor(src), 0); library->fill_tensor_uniform(NEAccessor(weights), 1); library->fill_tensor_uniform(NEAccessor(bias), 2); } // Compute function conv_layer.run(); return dst; } TensorShape get_output_shape(TensorShape in_shape, TensorShape kernel_shape, const PadStrideInfo &conv_info) { TensorShape out_shape(in_shape); const std::pair scaled_dims = arm_compute::scaled_dimensions(in_shape.x(), in_shape.y(), kernel_shape.x(), kernel_shape.y(), conv_info); out_shape.set(0, scaled_dims.first); out_shape.set(1, scaled_dims.second); out_shape.set(2, kernel_shape[3]); return out_shape; } } // namespace #ifndef DOXYGEN_SKIP_THIS BOOST_AUTO_TEST_SUITE(NEON) BOOST_AUTO_TEST_SUITE(ConvolutionLayer) BOOST_AUTO_TEST_SUITE(Direct) BOOST_AUTO_TEST_SUITE(Float) BOOST_TEST_DECORATOR(*boost::unit_test::label("precommit")) BOOST_DATA_TEST_CASE(W1x1, DirectConvolutionShapes() * CNNFloatDataTypes() * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::make({ 1, 4, 8, 16 }), input_shape, dt, sx, sy, num_kernels) { const unsigned int kernel_size = 1; const PadStrideInfo conv_info(sx, sy, 0, 0, DimensionRoundingType::FLOOR); const TensorShape w_shape(kernel_size, kernel_size, input_shape.z(), static_cast(num_kernels)); const TensorShape b_shape(static_cast(num_kernels)); const TensorShape d_shape(get_output_shape(input_shape, w_shape, conv_info)); Tensor dst = compute_convolution_layer(input_shape, w_shape, b_shape, d_shape, dt, conv_info); RawTensor ref = Reference::compute_reference_convolution_layer(input_shape, w_shape, b_shape, d_shape, dt, conv_info, 0); // Validate output validate(NEAccessor(dst), ref); } BOOST_TEST_DECORATOR(*boost::unit_test::label("precommit")) BOOST_DATA_TEST_CASE(W3x3, DirectConvolutionShapes() * CNNFloatDataTypes() * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::xrange(0, 2, 1) * boost::unit_test::data::xrange(0, 2, 1) * boost::unit_test::data::make({ 1, 4, 8, 16 }), input_shape, dt, sx, sy, px, py, num_kernels) { const unsigned int kernel_size = 3; const PadStrideInfo conv_info(sx, sy, px, py, DimensionRoundingType::FLOOR); const TensorShape w_shape(kernel_size, kernel_size, input_shape.z(), static_cast(num_kernels)); const TensorShape b_shape(static_cast(num_kernels)); const TensorShape d_shape(get_output_shape(input_shape, w_shape, conv_info)); Tensor dst = compute_convolution_layer(input_shape, w_shape, b_shape, d_shape, dt, conv_info); RawTensor ref = Reference::compute_reference_convolution_layer(input_shape, w_shape, b_shape, d_shape, dt, conv_info, 0); // Validate output validate(NEAccessor(dst), ref, tolerance_fp); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE(Quantized) BOOST_TEST_DECORATOR(*boost::unit_test::label("precommit")) BOOST_DATA_TEST_CASE(W1x1, DirectConvolutionShapes() * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::make({ 1, 4, 8, 16 }) * boost::unit_test::data::make({ 4, 5 }), input_shape, sx, sy, num_kernels, fixed_point_position) { const unsigned int kernel_size = 1; const PadStrideInfo conv_info(sx, sy, 0, 0, DimensionRoundingType::FLOOR); const TensorShape w_shape(kernel_size, kernel_size, input_shape.z(), static_cast(num_kernels)); const TensorShape b_shape(static_cast(num_kernels)); const TensorShape d_shape(get_output_shape(input_shape, w_shape, conv_info)); Tensor dst = compute_convolution_layer(input_shape, w_shape, b_shape, d_shape, DataType::QS8, conv_info, fixed_point_position); RawTensor ref = Reference::compute_reference_convolution_layer(input_shape, w_shape, b_shape, d_shape, DataType::QS8, conv_info, fixed_point_position); // Validate output validate(NEAccessor(dst), ref); } BOOST_TEST_DECORATOR(*boost::unit_test::label("precommit")) BOOST_DATA_TEST_CASE(W3x3, DirectConvolutionShapes() * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::xrange(1, 3, 1) * boost::unit_test::data::xrange(0, 2, 1) * boost::unit_test::data::xrange(0, 2, 1) * boost::unit_test::data::make({ 1, 4, 8, 16 }) * boost::unit_test::data::make({ 4, 5 }), input_shape, sx, sy, px, py, num_kernels, fixed_point_position) { const unsigned int kernel_size = 3; const PadStrideInfo conv_info(sx, sy, px, py, DimensionRoundingType::FLOOR); const TensorShape w_shape(kernel_size, kernel_size, input_shape.z(), static_cast(num_kernels)); const TensorShape b_shape(static_cast(num_kernels)); const TensorShape d_shape(get_output_shape(input_shape, w_shape, conv_info)); Tensor dst = compute_convolution_layer(input_shape, w_shape, b_shape, d_shape, DataType::QS8, conv_info, fixed_point_position); RawTensor ref = Reference::compute_reference_convolution_layer(input_shape, w_shape, b_shape, d_shape, DataType::QS8, conv_info, fixed_point_position); // Validate output validate(NEAccessor(dst), ref, tolerance_qs8); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() #endif