/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_TEST_VALIDATION_HELPERS_H__ #define __ARM_COMPUTE_TEST_VALIDATION_HELPERS_H__ #include "arm_compute/core/Types.h" #include "tests/Globals.h" #include "tests/ILutAccessor.h" #include "tests/Types.h" #include "tests/validation/ValidationUserConfiguration.h" #include "tests/validation/half.h" #include #include #include #include #include namespace arm_compute { namespace test { namespace validation { /** Helper function to fill one or more tensors with the uniform distribution with int values. * * @param[in] dist Distribution to be used to get the values for the tensor. * @param[in] seeds List of seeds to be used to fill each tensor. * @param[in,out] tensor Tensor to be initialized with the values of the distribution. * @param[in,out] other_tensors (Optional) One or more tensors to be filled. * */ template void fill_tensors(D &&dist, std::initializer_list seeds, T &&tensor, Ts &&... other_tensors) { const std::array < T, 1 + sizeof...(Ts) > tensors{ { std::forward(tensor), std::forward(other_tensors)... } }; std::vector vs(seeds); ARM_COMPUTE_ERROR_ON(vs.size() != tensors.size()); int k = 0; for(auto tp : tensors) { library->fill(*tp, std::forward(dist), vs[k++]); } } /** Helper function to get the testing range for each activation layer. * * @param[in] activation Activation function to test. * @param[in] fixed_point_position (Optional) Number of bits for the fractional part. Defaults to 1. * * @return A pair containing the lower upper testing bounds for a given function. */ template inline std::pair get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction activation, int fixed_point_position = 1) { bool is_float = std::is_same::value; is_float = is_float || std::is_same::value; std::pair bounds; // Set initial values if(is_float) { bounds = std::make_pair(-255.f, 255.f); } else { bounds = std::make_pair(std::numeric_limits::lowest(), std::numeric_limits::max()); } // Reduce testing ranges switch(activation) { case ActivationLayerInfo::ActivationFunction::LOGISTIC: case ActivationLayerInfo::ActivationFunction::SOFT_RELU: // Reduce range as exponent overflows if(is_float) { bounds.first = -40.f; bounds.second = 40.f; } else { bounds.first = -(1 << (fixed_point_position)); bounds.second = 1 << (fixed_point_position); } break; case ActivationLayerInfo::ActivationFunction::TANH: // Reduce range as exponent overflows if(!is_float) { bounds.first = -(1 << (fixed_point_position)); bounds.second = 1 << (fixed_point_position); } break; case ActivationLayerInfo::ActivationFunction::SQRT: // Reduce range as sqrt should take a non-negative number bounds.first = (is_float) ? 0 : 1; break; default: break; } return bounds; } /** Helper function to get the testing range for batch normalization layer. * * @param[in] fixed_point_position (Optional) Number of bits for the fractional part. Defaults to 1. * * @return A pair containing the lower upper testing bounds. */ template std::pair get_batchnormalization_layer_test_bounds(int fixed_point_position = 1) { bool is_float = std::is_floating_point::value; std::pair bounds; // Set initial values if(is_float) { bounds = std::make_pair(-1.f, 1.f); } else { bounds = std::make_pair(1, 1 << (fixed_point_position)); } return bounds; } /** Fill mask with the corresponding given pattern. * * @param[in,out] mask Mask to be filled according to pattern * @param[in] cols Columns (width) of mask * @param[in] rows Rows (height) of mask * @param[in] pattern Pattern to fill the mask according to */ inline void fill_mask_from_pattern(uint8_t *mask, int cols, int rows, MatrixPattern pattern) { unsigned int v = 0; std::mt19937 gen(user_config.seed.get()); std::bernoulli_distribution dist(0.5); for(int r = 0; r < rows; ++r) { for(int c = 0; c < cols; ++c, ++v) { uint8_t val = 0; switch(pattern) { case MatrixPattern::BOX: val = 255; break; case MatrixPattern::CROSS: val = ((r == (rows / 2)) || (c == (cols / 2))) ? 255 : 0; break; case MatrixPattern::DISK: val = (((r - rows / 2.0f + 0.5f) * (r - rows / 2.0f + 0.5f)) / ((rows / 2.0f) * (rows / 2.0f)) + ((c - cols / 2.0f + 0.5f) * (c - cols / 2.0f + 0.5f)) / ((cols / 2.0f) * (cols / 2.0f))) <= 1.0f ? 255 : 0; break; case MatrixPattern::OTHER: val = (dist(gen) ? 0 : 255); break; default: return; } mask[v] = val; } } if(pattern == MatrixPattern::OTHER) { std::uniform_int_distribution distribution_u8(0, ((cols * rows) - 1)); mask[distribution_u8(gen)] = 255; } } /** Calculate output tensor shape give a vector of input tensor to concatenate * * @param[in] input_shapes Shapes of the tensors to concatenate across depth. * * @return The shape of output concatenated tensor. */ inline TensorShape calculate_depth_concatenate_shape(std::vector input_shapes) { TensorShape out_shape = input_shapes.at(0); unsigned int max_x = 0; unsigned int max_y = 0; unsigned int depth = 0; for(auto const &shape : input_shapes) { max_x = std::max(shape.x(), max_x); max_y = std::max(shape.y(), max_y); depth += shape.z(); } out_shape.set(0, max_x); out_shape.set(1, max_y); out_shape.set(2, depth); return out_shape; } /** Fill matrix random. * * @param[in,out] matrix Matrix * @param[in] cols Columns (width) of matrix * @param[in] rows Rows (height) of matrix */ template inline void fill_warp_matrix(std::array &matrix, int cols, int rows) { std::mt19937 gen(user_config.seed.get()); std::uniform_real_distribution dist(-1, 1); for(int v = 0, r = 0; r < rows; ++r) { for(int c = 0; c < cols; ++c, ++v) { matrix[v] = dist(gen); } } if(SIZE == 9) { matrix[(cols * rows) - 1] = 1; } } /** Create a vector of random ROIs. * * @param[in] shape The shape of the input tensor. * @param[in] pool_info The ROI pooling information. * @param[in] num_rois The number of ROIs to be created. * @param[in] seed The random seed to be used. * * @return A vector that contains the requested number of random ROIs */ std::vector generate_random_rois(const TensorShape &shape, const ROIPoolingLayerInfo &pool_info, unsigned int num_rois, std::random_device::result_type seed); /** Helper function to fill the Lut random by a ILutAccessor. * * @param[in,out] table Accessor at the Lut. * */ template void fill_lookuptable(T &&table) { std::mt19937 generator(user_config.seed.get()); std::uniform_int_distribution distribution(std::numeric_limits::min(), std::numeric_limits::max()); for(int i = std::numeric_limits::min(); i <= std::numeric_limits::max(); i++) { table[i] = distribution(generator); } } } // namespace validation } // namespace test } // namespace arm_compute #endif /* __ARM_COMPUTE_TEST_VALIDATION_HELPERS_H__ */