/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ConvolutionLayer.h" #include "tests/validation/FixedPoint.h" #include "tests/validation/Helpers.h" namespace arm_compute { namespace test { namespace validation { namespace reference { namespace { inline bool is_valid_pixel(int i, int min, int max) { return (i >= min && i < max); } // 3D convolution for floating point type template ::value, int>::type = 0> void convolution3d(const T *in, const T *weights, const T *bias, T *out, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int fixed_point_position) { ARM_COMPUTE_UNUSED(fixed_point_position); const int half_width_weights = width_weights / 2; const int half_height_weights = height_weights / 2; // Reset accumulator T acc(0); // Compute a 2D convolution for each IFM and accumulate the result for(int ifm = 0; ifm < depth_in; ++ifm) { // Compute the offset for the input slice const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in; // Compute 2D convolution for(int yk = -half_height_weights; yk <= half_height_weights; ++yk) { for(int xk = -half_width_weights; xk <= half_width_weights; ++xk) { // Check if the pixel is out-of-bound if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in)) { const int idx = xk + half_width_weights; const int idy = yk + half_height_weights; const T i_value = in[offset_slice_in + xk + yk * width_in]; const T w_value = weights[idx + idy * width_weights + ifm * width_weights * height_weights]; acc += i_value * w_value; } } } } // Accumulate the bias and store the result *out = acc + (*bias); } // 3D convolution for fixed point type template ::value, int>::type = 0> void convolution3d(const T *in, const T *weights, const T *bias, T *out, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int fixed_point_position) { const int half_width_weights = width_weights / 2; const int half_height_weights = height_weights / 2; using namespace fixed_point_arithmetic; using promoted_type = fixed_point_arithmetic::traits::promote_t; // Reset accumulator fixed_point acc(0, fixed_point_position); // Compute a 2D convolution for each IFM and accumulate the result for(int ifm = 0; ifm < depth_in; ++ifm) { // Compute the offset for the input slice const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in; // Compute 2D convolution for(int yk = -half_height_weights; yk <= half_height_weights; ++yk) { for(int xk = -half_width_weights; xk <= half_width_weights; ++xk) { // Check if the pixel is out-of-bound if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in)) { const int idx = xk + half_width_weights; const int idy = yk + half_height_weights; const fixed_point i_value(in[offset_slice_in + xk + yk * width_in], fixed_point_position, true); const fixed_point w_value(weights[idx + idy * width_weights + ifm * width_weights * height_weights], fixed_point_position, true); const fixed_point iw = i_value * w_value; acc = iw + acc; } } } } // Get the bias const fixed_point b(*bias, fixed_point_position, true); // Accumulate the bias and covert back acc = acc + b; fixed_point res(acc); *out = res.raw(); } } // namespace template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info) { // Create reference SimpleTensor dst{ output_shape, src.data_type(), 1, src.fixed_point_position() }; // Compute reference const int width_in = src.shape().x(); const int height_in = src.shape().y(); const int depth_in = src.shape().z(); const int width_out = dst.shape().x(); const int height_out = dst.shape().y(); const int depth_out = dst.shape().z(); const int width_weights = weights.shape().x(); const int height_weights = weights.shape().y(); const int depth_weights = weights.shape().z(); const int pad_xi = std::min(static_cast(info.pad().first), width_weights / 2); const int pad_yi = std::min(static_cast(info.pad().second), height_weights / 2); const int start_xi = width_weights / 2 - pad_xi; const int start_yi = height_weights / 2 - pad_yi; const int end_xi = width_in - start_xi; const int end_yi = height_in - start_yi; const int stride_xi = info.stride().first; const int stride_yi = info.stride().second; const int num_batches = src.shape().total_size() / (width_in * height_in * depth_in); for(int r = 0; r < num_batches; ++r) { for(int yi = start_yi; yi < end_yi; yi += stride_yi) { for(int xi = start_xi; xi < end_xi; xi += stride_xi) { for(int ofm = 0; ofm < depth_out; ++ofm) { // Compute input and output offsets const int offset_in = r * width_in * height_in * depth_in; const int xo = (xi - start_xi) / stride_xi; const int yo = (yi - start_yi) / stride_yi; const int offset_out = xo + yo * width_out + ofm * width_out * height_out + r * width_out * height_out * depth_out; // Compute 3D convolution convolution3d(src.data() + offset_in, weights.data() + ofm * width_weights * height_weights * depth_weights, bias.data() + ofm, dst.data() + offset_out, xi, yi, width_in, height_in, depth_in, width_weights, height_weights, src.fixed_point_position()); } } } } return dst; } template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info); template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info); template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info); template SimpleTensor convolution_layer(const SimpleTensor &src, const SimpleTensor &weights, const SimpleTensor &bias, const TensorShape &output_shape, const PadStrideInfo &info); } // namespace reference } // namespace validation } // namespace test } // namespace arm_compute