/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(ENABLE_EXPERIMENTAL_DYNAMIC_FUSION) #include "src/gpu/cl/kernels/experimental/dynamic_fusion/ClCompositeKernel.h" #include "src/core/utils/helpers/float_ops.h" #include "src/gpu/cl/kernels/ClElementwiseKernel.h" #include "src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h" #include "tests/CL/CLAccessor.h" #include "tests/framework/Macros.h" #include "tests/framework/datasets/Datasets.h" #include "tests/validation/Validation.h" #include "tests/validation/reference/ElementwiseOperations.h" #include "tests/validation/reference/GEMM.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/AccessWindowStatic.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include using namespace arm_compute::experimental::dynamic_fusion; namespace arm_compute { namespace test { namespace validation { namespace { /** Macros which measures the wall clock time, and records it into a map measurement_map with name clock_name */ #define TICK(clock_name) \ auto clock_name##_tick = std::chrono::high_resolution_clock::now(); #define TOCK(clock_name, measurement_map) \ auto clock_name##_tock = std::chrono::high_resolution_clock::now(); \ measurement_map["\"" #clock_name "\""] = duration_cast(clock_name##_tock - clock_name##_tick); #define TOCK_AVG(clock_name, measurement_map, num_iterations) \ auto clock_name##_tock = std::chrono::high_resolution_clock::now(); \ measurement_map["\"" #clock_name "\""] = duration_cast((clock_name##_tock - clock_name##_tick) / (num_iterations)); template void fill(U &&tensor, int seed) { static_assert(std::is_floating_point::value || std::is_same::value, "Only floating point data types supported."); using DistributionType = typename std::conditional::value, arm_compute::utils::uniform_real_distribution_16bit, std::uniform_real_distribution>::type; DistributionType distribution{ T(-1.0f), T(1.0f) }; library->fill(tensor, distribution, seed); // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0) DistributionType distribution_inf{ T(std::numeric_limits::infinity()), T(std::numeric_limits::infinity()) }; library->fill_borders_with_garbage(tensor, distribution_inf, seed); } using ElementsProcessed = Steps; std::pair mock_gemm_native_validate_and_configure_window(ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info, ElementsProcessed &num_elements_processed) { unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0]; unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1]; bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d; bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0; Window win{}; Window win_out{}; bool window_changed = false; // In case both input and dst have to be reinterpreted as 3D tensors, // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false. if(reinterpret_input_as_3d == reinterpret_output_as_3d) { reinterpret_output_as_3d = false; } // dst tensor auto initialization if not yet initialized auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info))); TensorInfo tmp_info(*dst); if(reinterpret_output_as_3d) { // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM, // the window needs to be constructed on the 2D collapsed version of the tensor TensorShape tmp_shape(dst->tensor_shape()); tmp_shape.collapse(2U, 1U); tmp_info.set_tensor_shape(tmp_shape); } // Configure kernel window num_elems_processed_per_iteration_x = rhs_info.n0; num_elems_processed_per_iteration_y = lhs_info.m0; win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); AccessWindowStatic src0_access(src0, 0, 0, src0->dimension(0), src0->dimension(1)); AccessWindowStatic src1_access(src1, 0, 0, ceil_to_multiple(src1->dimension(0), num_elems_processed_per_iteration_x), src1->dimension(1)); AccessWindowStatic dst_access(dst, 0, 0, dst->dimension(0), dst->dimension(1)); if(src2 != nullptr) { const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x; AccessWindowStatic src2_access(src2, 0, 0, ceil_to_multiple(src2->dimension(0), bias_processed_per_iteration_x), src2->dimension(1)); window_changed = update_window_and_padding(win, src0_access, src1_access, src2_access) || // window used by the execute_window_loop update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor } else { window_changed = update_window_and_padding(win, src0_access, src1_access) || // window used by the execute_window_loop update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor } // Collapse along the Z direction // This collapse needs to be here in order to tune the Z dimension of LWS Window collapsed = win; const unsigned int dimension_to_collapse = std::min(static_cast(dst->num_dimensions()), 2u); collapsed = win.collapse(win, dimension_to_collapse); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, collapsed); } void set_build_options(ClKernelCode &cl_code, GemmNativeDescriptor gemm_native_desc, const TensorInfo &t_lhs_info, const TensorInfo &t_rhs_info, const TensorInfo *t_bias_info, const TensorInfo &t_dst_info) { CLBuildOptions ref_cl_build_options; { // If reinterpret_input_as_3d = reinterpret_output_as_3d = true, // we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel. // This means that the actual m used by the kernel is given by dst->dimension(1) and not by gemm_info.m auto reinterpret_input_as_3d = gemm_native_desc.reinterpret_input_as_3d; auto reinterpret_output_as_3d = gemm_native_desc.depth_output_gemm3d != 0; auto _slide_matrix_b = (t_rhs_info.num_dimensions() >= t_lhs_info.num_dimensions()); auto _use_dummy_work_items = false; // In case both input and dst have to be reinterpreted as 3D tensors, // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false. if(reinterpret_input_as_3d == reinterpret_output_as_3d) { reinterpret_input_as_3d = false; reinterpret_output_as_3d = false; } const unsigned int internal_m = reinterpret_output_as_3d ? gemm_native_desc.m : t_dst_info.dimension(1); const unsigned int h_gemm_3d = reinterpret_output_as_3d ? t_dst_info.dimension(1) : t_lhs_info.dimension(1); const unsigned int d_gemm_3d = reinterpret_output_as_3d ? t_dst_info.dimension(2) : t_lhs_info.dimension(2); // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding. const unsigned int partial_store_m0 = internal_m % gemm_native_desc.lhs_info.m0; const unsigned int partial_store_n0 = gemm_native_desc.n % gemm_native_desc.rhs_info.n0; // Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads. const unsigned int internal_m0 = std::min(internal_m, gemm_native_desc.lhs_info.m0); ref_cl_build_options.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(t_dst_info.data_type())); ref_cl_build_options.add_option_if(!(helpers::float_ops::is_one(gemm_native_desc.alpha)), "-DALPHA=" + float_to_string_with_full_precision(gemm_native_desc.alpha)); ref_cl_build_options.add_option_if(t_bias_info != nullptr, "-DBETA=" + float_to_string_with_full_precision(gemm_native_desc.beta)); ref_cl_build_options.add_option_if(helpers::float_ops::is_one(gemm_native_desc.beta), "-DUNIT_BETA"); ref_cl_build_options.add_option_if(gemm_native_desc.broadcast_bias, "-DBROADCAST_BIAS"); ref_cl_build_options.add_option_if(reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D"); ref_cl_build_options.add_option_if(reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D"); ref_cl_build_options.add_option_if(reinterpret_input_as_3d || reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d)); ref_cl_build_options.add_option_if(reinterpret_input_as_3d || reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d)); ref_cl_build_options.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(t_rhs_info.dimension(2))); ref_cl_build_options.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS"); ref_cl_build_options.add_option("-DM=" + support::cpp11::to_string(internal_m)); ref_cl_build_options.add_option("-DN=" + support::cpp11::to_string(gemm_native_desc.n)); ref_cl_build_options.add_option("-DK=" + support::cpp11::to_string(gemm_native_desc.k)); ref_cl_build_options.add_option("-DM0=" + support::cpp11::to_string(internal_m0)); ref_cl_build_options.add_option("-DN0=" + support::cpp11::to_string(gemm_native_desc.rhs_info.n0)); ref_cl_build_options.add_option("-DK0=" + support::cpp11::to_string(gemm_native_desc.rhs_info.k0)); ref_cl_build_options.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0)); ref_cl_build_options.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0)); // Manually add PostOps { ref_cl_build_options.add_option("-DOP=ADD_X_POS_1"); ref_cl_build_options.add_option("-DP2_ELTWISE_ARG1_HEIGHT=" + support::cpp11::to_string(t_dst_info.dimension(1))); ref_cl_build_options.add_option("-DP2_ELTWISE_ARG1_WIDTH=" + support::cpp11::to_string(t_dst_info.dimension(0))); } } cl_code.build_options = ref_cl_build_options; } } // namespace TEST_SUITE(CL) TEST_SUITE(UNIT) TEST_SUITE(DYNAMIC_FUSION) TEST_SUITE(ClCompositeKernel) TEST_SUITE(Validate) TEST_CASE(MoveNet_SubGraph_1, framework::DatasetMode::ALL) { /* Computation: * out = add(addend, gemm_native(lhs, rhs, bias)) (non-broadcast) */ const auto data_type = DataType::F32; const auto m = 5U; const auto n = 4U; const auto k = 3U; const auto t_lhs_shape = TensorShape(k, m); const auto t_rhs_shape = TensorShape(n, k); const auto t_dst_shape = TensorShape(n, m); auto t_lhs_info = TensorInfo(t_lhs_shape, 1, data_type); auto t_rhs_info = TensorInfo(t_rhs_shape, 1, data_type); const auto t_bias_info = TensorInfo(TensorShape(), 1, DataType::F32); auto t_dst_info = TensorInfo(t_dst_shape, 1, data_type); const ClTensorDescriptor t_lhs_desc{ &t_lhs_info, 2 }; const ClTensorDescriptor t_rhs_desc{ &t_rhs_info, 2 }; const ClTensorDescriptor t_bias_desc{ &t_bias_info, 2 }; const ClTensorDescriptor t_addend_desc{ &t_dst_info, 2 }; const ClTensorDescriptor t_dst_desc{ &t_dst_info, 2 }; ClKernelBlueprint bp; ArgumentID tid_lhs; ArgumentID tid_rhs; ArgumentID tid_l0_bias = g_arg_placeholder; ArgumentID tid_l1_addend; ArgumentID tid_dst; auto st = add_tensor_argument(bp, t_lhs_desc, tid_lhs); st = add_tensor_argument(bp, t_rhs_desc, tid_rhs); st = add_tensor_argument(bp, t_addend_desc, tid_l1_addend); st = add_tensor_argument(bp, t_dst_desc, tid_dst); const auto common_kernel_desc = ClKernelComponentDescriptor{}; const GemmNativeDescriptor gemm_native_desc{ 1.0, 1.0, m, n, k }; const GEMMKernelInfo gemm_info{ m, n, k, 0, false, false, false, false, ActivationLayerInfo{}, 1, 1, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, 0, 0 }; const EltwiseAddDescriptor eltwise_add_desc{ ConvertPolicy::WRAP }; const TileDescriptor store_tile_info{}; ArgumentID tid_acc; st = add_tensor_intermed(bp, tid_acc); st = add_kcomp_gemm_native(bp, common_kernel_desc, gemm_native_desc, tid_lhs, tid_rhs, tid_l0_bias, tid_acc); st = add_kcomp_eltwise_add(bp, common_kernel_desc, EltwiseAddDescriptor{}, tid_l1_addend, tid_acc, tid_acc); st = add_kcomp_store(bp, common_kernel_desc, tid_acc, tid_dst, StoreType::StoreBlockBoundaryAware); ClKernelCode cl_code; st = set_tile_info(bp, store_tile_info); st = build(cl_code, ClCodeBuilderContext{ GpuInfo{ GPUTarget::G71 } }, bp); set_build_options(cl_code, gemm_native_desc, t_lhs_info, t_rhs_info, nullptr, t_dst_info); ElementsProcessed num_elements_processed{}; auto win_config = mock_gemm_native_validate_and_configure_window(&t_lhs_info, &t_rhs_info, nullptr, &t_dst_info, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, gemm_info, num_elements_processed); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); cl_code.window = win_config.second; ClExecutionDescriptor exec_desc; st = tune_static(exec_desc, cl_code); CLScheduler::get().default_init(); ClCompositeKernel kernel; kernel.configure(CLKernelLibrary::get().get_compile_context(), cl_code); // Construct tensors CLTensor t_lhs{}; CLTensor t_rhs{}; CLTensor t_l1_addend{}; CLTensor t_dst{}; // Init tensors { t_lhs.allocator()->init(t_lhs_info); t_rhs.allocator()->init(t_rhs_info); t_l1_addend.allocator()->init(t_dst_info); t_dst.allocator()->init(t_dst_info); } // "Pack" tensors TensorBinding tensors({ { tid_lhs, &t_lhs }, { tid_rhs, &t_rhs }, { tid_l1_addend, &t_l1_addend }, { tid_dst, &t_dst } }); // Allocate and fill tensors { t_lhs.allocator()->allocate(); t_rhs.allocator()->allocate(); t_l1_addend.allocator()->allocate(); t_dst.allocator()->allocate(); fill(CLAccessor(t_lhs), 0); fill(CLAccessor(t_rhs), 1); fill(CLAccessor(t_l1_addend), 2); } CLScheduler::get().enqueue_op(kernel, tensors, exec_desc, true); // Create reference SimpleTensor ref_t_lhs{ t_lhs_shape, data_type, 1 }; SimpleTensor ref_t_rhs{ t_rhs_shape, data_type, 1 }; SimpleTensor ref_t_bias_placeholder{ t_dst_shape, data_type, 1 }; SimpleTensor ref_t_l1_addend{ t_dst_shape, data_type, 1 }; // Fill reference fill(ref_t_lhs, 0); fill(ref_t_rhs, 1); fill(ref_t_l1_addend, 2); const auto ref_t_dst = reference::arithmetic_operation( ArithmeticOperation::ADD, ref_t_l1_addend, reference::gemm(ref_t_lhs, ref_t_rhs, ref_t_bias_placeholder, gemm_native_desc.alpha, 0.f /* To disable bias */), data_type, eltwise_add_desc.convert_policy); RelativeTolerance tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */ validate(CLAccessor(t_dst), ref_t_dst, tolerance_f32); } TEST_SUITE_END() // Validate TEST_SUITE(Benchmark) TEST_CASE(MoveNet_SubGraph_1, framework::DatasetMode::ALL) { using std::chrono::duration_cast; using std::chrono::microseconds; const int num_iterations = 200; std::map measurements; /* Computation: * out = add(addend, gemm_native(lhs, rhs, bias)) */ const auto data_type = DataType::F32; const unsigned int m = 12 * 12; const unsigned int n = 64; const unsigned int k = 384; const auto t_lhs_shape = TensorShape(k, m); const auto t_rhs_shape = TensorShape(n, k); const auto t_dst_shape = TensorShape(n, m); auto t_lhs_info = TensorInfo(t_lhs_shape, 1, data_type); auto t_rhs_info = TensorInfo(t_rhs_shape, 1, data_type); auto t_bias_info = TensorInfo(TensorShape(), 1, data_type); auto t_l0_dst_info = TensorInfo(t_dst_shape, 1, data_type); // Intermediate tensor for cond3 auto t_l1_rhs_info = TensorInfo(t_dst_shape, 1, data_type); auto t_dst_info = TensorInfo(t_dst_shape, 1, data_type); const auto common_kernel_desc = ClKernelComponentDescriptor{}; const GemmNativeDescriptor gemm_native_desc{ 1.0, 0.0, m, n, k }; const GEMMKernelInfo gemm_info{ m, n, k, 0, false, false, false, false, ActivationLayerInfo{}, 1, 1, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, 0, 0 }; const EltwiseAddDescriptor eltwise_add_desc{ ConvertPolicy::WRAP }; const TileDescriptor store_tile_info{}; // Create reference SimpleTensor ref_t_lhs{ t_lhs_shape, data_type, 1 }; SimpleTensor ref_t_rhs{ t_rhs_shape, data_type, 1 }; SimpleTensor ref_t_bias_placeholder{ t_dst_shape, data_type, 1 }; SimpleTensor ref_t_l1_addend{ t_dst_shape, data_type, 1 }; // Fill reference fill(ref_t_lhs, 0); fill(ref_t_rhs, 1); fill(ref_t_l1_addend, 2); const auto ref_t_dst = reference::arithmetic_operation( ArithmeticOperation::ADD, ref_t_l1_addend, reference::gemm(ref_t_lhs, ref_t_rhs, ref_t_bias_placeholder, gemm_native_desc.alpha, 0.f /* To disable bias */), data_type, eltwise_add_desc.convert_policy); CLScheduler::get().default_init(); /* Condition 0: Dynamic Fused Kernel */ CLTensor cond0_t_dst{}; { TICK(cond0_0_startup_time); ClKernelBlueprint bp; ArgumentID tid_lhs; ArgumentID tid_rhs; ArgumentID tid_l0_bias = g_arg_placeholder; ArgumentID tid_l1_addend; ArgumentID tid_dst; const ClTensorDescriptor t_lhs_desc{ &t_lhs_info, 2 }; const ClTensorDescriptor t_rhs_desc{ &t_rhs_info, 2 }; const ClTensorDescriptor t_bias_desc{ &t_bias_info, 2 }; const ClTensorDescriptor t_addend_desc{ &t_dst_info, 2 }; const ClTensorDescriptor t_dst_desc{ &t_dst_info, 2 }; ClKernelCode cl_code; TICK(cond0_build_time) auto st = add_tensor_argument(bp, t_lhs_desc, tid_lhs); st = add_tensor_argument(bp, t_rhs_desc, tid_rhs); st = add_tensor_argument(bp, t_addend_desc, tid_l1_addend); st = add_tensor_argument(bp, t_dst_desc, tid_dst); ArgumentID tid_acc; st = add_tensor_intermed(bp, tid_acc); st = add_kcomp_gemm_native(bp, common_kernel_desc, gemm_native_desc, tid_lhs, tid_rhs, tid_l0_bias, tid_acc); st = add_kcomp_eltwise_add(bp, common_kernel_desc, EltwiseAddDescriptor{}, tid_l1_addend, tid_acc, tid_acc); st = add_kcomp_store(bp, common_kernel_desc, tid_acc, tid_dst, StoreType::StoreBlockBoundaryAware); st = set_tile_info(bp, store_tile_info); st = build(cl_code, ClCodeBuilderContext{ GpuInfo{ GPUTarget::G71 } }, bp); set_build_options(cl_code, gemm_native_desc, t_lhs_info, t_rhs_info, nullptr, t_dst_info); ElementsProcessed num_elements_processed{}; auto win_config = mock_gemm_native_validate_and_configure_window(&t_lhs_info, &t_rhs_info, nullptr, &t_dst_info, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, gemm_info, num_elements_processed); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); cl_code.window = win_config.second; TOCK(cond0_build_time, measurements) TICK(cond0_tune_time) ClExecutionDescriptor exec_desc; st = tune_static(exec_desc, cl_code); TOCK(cond0_tune_time, measurements) TICK(cond0_configure_time) ClCompositeKernel kernel; kernel.configure(CLKernelLibrary::get().get_compile_context(), cl_code); TOCK(cond0_configure_time, measurements) // Construct tensors CLTensor t_lhs{}; CLTensor t_rhs{}; CLTensor t_l1_addend{}; // Init tensors { t_lhs.allocator()->init(t_lhs_info); t_rhs.allocator()->init(t_rhs_info); t_l1_addend.allocator()->init(t_dst_info); cond0_t_dst.allocator()->init(t_dst_info); } // Allocate tensors { t_lhs.allocator()->allocate(); t_rhs.allocator()->allocate(); t_l1_addend.allocator()->allocate(); cond0_t_dst.allocator()->allocate(); fill(CLAccessor(t_lhs), 0); fill(CLAccessor(t_rhs), 1); fill(CLAccessor(t_l1_addend), 2); } // "Pack" tensors TensorBinding tensors({ { tid_lhs, &t_lhs }, { tid_rhs, &t_rhs }, { tid_l1_addend, &t_l1_addend }, { tid_dst, &cond0_t_dst } }); CLScheduler::get().enqueue_op(kernel, tensors, exec_desc, true); CLScheduler::get().sync(); TOCK(cond0_0_startup_time, measurements) TICK(cond0_1_latency) for(int i = 0; i < num_iterations; ++i) { CLScheduler::get().enqueue_op(kernel, tensors, exec_desc, true); } CLScheduler::get().sync(); TOCK_AVG(cond0_1_latency, measurements, num_iterations) } /* Condition 1: Dynamic Unfused Kernel */ /* Condition 2: Static Fused Kernel (current) */ CLTensor cond2_t_dst{}; { TICK(cond2_0_startup_time); arm_compute::opencl::kernels::ClGemmMatrixMultiplyNativeKernel l0_gemm_mm; TICK(cond2_configure_time); experimental::PostOpList post_ops; post_ops.push_back_op>(&t_dst_info, 1, eltwise_add_desc.convert_policy); GEMMKernelInfo gemm_info{ m, n, k, 0, false, false, false, false, ActivationLayerInfo{}, 1, 1, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, 0, 0, post_ops }; l0_gemm_mm.configure(CLKernelLibrary::get().get_compile_context(), &t_lhs_info, &t_rhs_info, nullptr, &t_dst_info, gemm_native_desc.alpha, gemm_native_desc.beta, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, gemm_info); TOCK(cond2_configure_time, measurements); // Construct tensors CLTensor t_lhs{}; CLTensor t_rhs{}; CLTensor t_l1_addend{}; // Init tensors { t_lhs.allocator()->init(t_lhs_info); t_rhs.allocator()->init(t_rhs_info); t_l1_addend.allocator()->init(t_dst_info); cond2_t_dst.allocator()->init(t_dst_info); } // Allocate tensors { t_lhs.allocator()->allocate(); t_rhs.allocator()->allocate(); t_l1_addend.allocator()->allocate(); cond2_t_dst.allocator()->allocate(); fill(CLAccessor(t_lhs), 0); fill(CLAccessor(t_rhs), 1); fill(CLAccessor(t_l1_addend), 2); } // "Pack" tensors ITensorPack tensors { { ACL_SRC_0, &t_lhs }, { ACL_SRC_1, &t_rhs }, { EXPERIMENTAL_ACL_POST_OP_ARG_FIRST, &t_l1_addend }, { ACL_DST, &cond2_t_dst }, }; CLScheduler::get().enqueue_op(l0_gemm_mm, tensors, true); CLScheduler::get().sync(); TOCK(cond2_0_startup_time, measurements); TICK(cond2_1_latency); for(int i = 0; i < num_iterations; ++i) { CLScheduler::get().enqueue_op(l0_gemm_mm, tensors, true); } CLScheduler::get().sync(); TOCK_AVG(cond2_1_latency, measurements, num_iterations); } /* Condition 3: Static Unfused Kernel (current) */ CLTensor cond3_t_dst{}; { TICK(cond3_0_startup_time); arm_compute::opencl::kernels::ClGemmMatrixMultiplyNativeKernel l0_gemm_mm; arm_compute::opencl::kernels::ClSaturatedArithmeticKernel l1_add; TICK(cond3_configure_time); GEMMKernelInfo gemm_info{ m, n, k, 0, false, false, false, false, ActivationLayerInfo{}, 1, 1, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, 0, 0 }; l0_gemm_mm.configure(CLKernelLibrary::get().get_compile_context(), &t_lhs_info, &t_rhs_info, nullptr, &t_l0_dst_info, gemm_native_desc.alpha, gemm_native_desc.beta, gemm_native_desc.lhs_info, gemm_native_desc.rhs_info, gemm_info); l1_add.configure(CLKernelLibrary::get().get_compile_context(), ArithmeticOperation::ADD, &t_l0_dst_info, &t_l1_rhs_info, &t_dst_info, eltwise_add_desc.convert_policy); TOCK(cond3_configure_time, measurements); // Construct tensors CLTensor t_lhs{}; CLTensor t_rhs{}; CLTensor t_l0_dst{}; CLTensor t_l1_addend{}; // Init tensors { t_lhs.allocator()->init(t_lhs_info); t_rhs.allocator()->init(t_rhs_info); t_l0_dst.allocator()->init(t_l0_dst_info); t_l1_addend.allocator()->init(t_dst_info); cond3_t_dst.allocator()->init(t_dst_info); } // Allocate tensors { t_lhs.allocator()->allocate(); t_rhs.allocator()->allocate(); t_l0_dst.allocator()->allocate(); t_l1_addend.allocator()->allocate(); cond3_t_dst.allocator()->allocate(); fill(CLAccessor(t_lhs), 0); fill(CLAccessor(t_rhs), 1); fill(CLAccessor(t_l1_addend), 2); } // "Pack" tensors ITensorPack tensors_l0 { { ACL_SRC_0, &t_lhs }, { ACL_SRC_1, &t_rhs }, { ACL_DST, &t_l0_dst }, }; ITensorPack tensors_l1 { { ACL_SRC_0, &t_l0_dst }, { ACL_SRC_1, &t_l1_addend }, { ACL_DST, &cond3_t_dst }, }; CLScheduler::get().enqueue_op(l0_gemm_mm, tensors_l0, true); CLScheduler::get().enqueue_op(l1_add, tensors_l1, true); CLScheduler::get().sync(); TOCK(cond3_0_startup_time, measurements); TICK(cond3_1_latency); for(int i = 0; i < num_iterations; ++i) { CLScheduler::get().enqueue_op(l0_gemm_mm, tensors_l0, true); CLScheduler::get().enqueue_op(l1_add, tensors_l1, true); } CLScheduler::get().sync(); TOCK_AVG(cond3_1_latency, measurements, num_iterations); } RelativeTolerance tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */ std::cout << "cond0 validation: " << std::endl; validate(CLAccessor(cond0_t_dst), ref_t_dst, tolerance_f32); std::cout << "cond2 validation: " << std::endl; validate(CLAccessor(cond2_t_dst), ref_t_dst, tolerance_f32); std::cout << "cond3 validation: " << std::endl; validate(CLAccessor(cond3_t_dst), ref_t_dst, tolerance_f32); /* Report */ std::cout << "Performance comparison (gemm native + add)" << std::endl; std::cout << "cond0: dynamic fusion module" << std::endl; std::cout << "cond2: static fused with post ops" << std::endl; std::cout << "cond3: static unfused" << std::endl; for(auto m : measurements) { std::cout << m.first << ": " << m.second.count() << "us" << std::endl; } } TEST_SUITE_END() // Benchmark TEST_SUITE_END() // ClCompositeKernel TEST_SUITE_END() // DYNAMIC_FUSION TEST_SUITE_END() // UNIT TEST_SUITE_END() // CL } // namespace validation } // namespace test } // namespace arm_compute #endif // defined(ENABLE_EXPERIMENTAL_DYNAMIC_FUSION)