/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef ENABLE_EXPERIMENTAL_DYNAMIC_FUSION #include "src/core/experimental/dynamic_fusion/ClKernelBuildingAPI.h" #include "src/core/utils/helpers/float_ops.h" #include "tests/CL/CLAccessor.h" #include "tests/framework/Macros.h" #include "tests/validation/Validation.h" #include "tests/validation/reference/ConvolutionLayer.h" #include "tests/validation/reference/ElementwiseOperations.h" #include "tests/validation/reference/Permute.h" #include "arm_compute/runtime/experimental/ClCompositeOperator.h" #include "tests/validation/reference/Floor.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/runtime/CL/CLTensor.h" #include "tests/validation/CL/UNIT/dynamic_fusion/Utils.h" using namespace arm_compute::experimental::dynamic_fusion; using namespace arm_compute::test::validation::utils; namespace arm_compute { namespace test { namespace validation { TEST_SUITE(CL) TEST_SUITE(UNIT) TEST_SUITE(DYNAMIC_FUSION) TEST_SUITE(ArbitraryFusion) TEST_CASE(ElementwiseBroadcasting, framework::DatasetMode::ALL) { // Test elementwise broadcasting const auto data_type = DataType::F32; const auto data_layout = DataLayout::NHWC; const auto input_shape = TensorShape(7, 9, 5); const auto rhs_shape = TensorShape(7, 1, 1); const auto dst_shape = TensorShape(7, 9, 5); // Tensor Info auto input_info = TensorInfo(input_shape, 1, data_type, data_layout); auto addend_info = TensorInfo(rhs_shape, 1, data_type, data_layout); auto dst_info = TensorInfo(); ElementwiseDescriptor add_desc{ ArithmeticOperation::ADD }; CLScheduler::get().default_reinit(); const auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); OperatorGraph op_graph; const auto op_input = add_tensor(op_graph, input_info); const auto op_addend = add_tensor(op_graph, addend_info); const auto op_dst = add_tensor(op_graph, dst_info); add_op_elementwise_op(op_graph, add_desc, op_input, op_addend, op_dst); const ClWorkloadContext workload_ctx{ GpuInfo{ CLScheduler::get().target() } }; ClWorkload workload; build(workload, op_graph, workload_ctx); ClCompositeOperator op; op.configure(cl_compile_ctx, workload); // Construct tensors CLTensor t_input{}; CLTensor t_addend{}; CLTensor t_dst{}; // Init tensors t_input.allocator()->init(input_info); t_addend.allocator()->init(addend_info); t_dst.allocator()->init(dst_info); // Allocate and fill tensors t_input.allocator()->allocate(); t_addend.allocator()->allocate(); t_dst.allocator()->allocate(); // Fill fill(CLAccessor(t_input), 0, library.get()); fill(CLAccessor(t_addend), 1, library.get()); // Pack tensors OpTensorBinding bp_tensors({ { op_input, &t_input }, { op_addend, &t_addend }, { op_dst, &t_dst } }); // Populate prepare and run pack-maps (including allocating aux tensors) ClAuxTensorData aux_tensor_data{}; TensorPackMap prepare_pack_map{}; TensorPackMap run_pack_map{}; bind_tensors(aux_tensor_data, prepare_pack_map, run_pack_map, workload, bp_tensors); op.prepare(prepare_pack_map); op.run(run_pack_map); // Create reference SimpleTensor ref_input{ input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; SimpleTensor ref_addend{ rhs_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; // Fill reference fill(ref_input, 0, library.get()); fill(ref_addend, 1, library.get()); auto ref_input_nchw = reference::permute(ref_input, PermutationVector(1U, 2U, 0U)); auto ref_addend_nchw = reference::permute(ref_addend, PermutationVector(1U, 2U, 0U)); auto dst_shape_nchw = dst_shape; permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U)); auto ref_t_dst_nchw = reference::arithmetic_operation( ArithmeticOperation::ADD, ref_input_nchw, ref_addend_nchw, data_type, ConvertPolicy{}); const auto ref_t_dst = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U)); RelativeTolerance tolerance_f32(0.001f); validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32); } TEST_CASE(DivFloor, framework::DatasetMode::ALL) { // x = floor(div(input, input2)) const auto data_type = DataType::F32; const auto eltwise_info = ElementwiseDescriptor{ ArithmeticOperation::DIV }; // Tensor Values const auto width = 7U; const auto height = 6U; // Shapes const auto input1_shape = TensorShape(width, height); const auto input2_shape = TensorShape(width, height); const auto dst_shape = TensorShape(width, height); // Create reference SimpleTensor ref_src_nhwc{ input1_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; SimpleTensor ref_src2_nhwc{ input2_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; // Fill reference fill(ref_src_nhwc, 0, library.get()); fill(ref_src2_nhwc, 1, library.get()); auto ref_src = reference::permute(ref_src_nhwc, PermutationVector(1U, 2U, 0U)); auto ref_src2 = reference::permute(ref_src2_nhwc, PermutationVector(1U, 2U, 0U)); TensorShape dst_shape_nchw{ dst_shape }; permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U)); const auto ref_dst_nchw = reference::floor_layer(reference::arithmetic_operation( ArithmeticOperation::DIV, ref_src, ref_src2, data_type, ConvertPolicy::SATURATE)); const auto ref_t_dst = reference::permute(ref_dst_nchw, PermutationVector(2U, 0U, 1U)); // Tensor Info auto input1_info = TensorInfo(input1_shape, 1, data_type, DataLayout::NHWC); auto input2_info = TensorInfo(input2_shape, 1, data_type, DataLayout::NHWC); auto dst_info = TensorInfo(); auto acc_info = TensorInfo(); // Intermediate tensor for division // Initialise Scheduler CLScheduler::get().default_reinit(); const auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); OperatorGraph op_graph; // add tensors auto op_input1 = add_tensor(op_graph, input1_info); auto op_input2 = add_tensor(op_graph, input2_info); auto op_acc = add_tensor(op_graph, acc_info); auto op_dst = add_tensor(op_graph, dst_info); add_op_elementwise_op(op_graph, eltwise_info, op_input1, op_input2, op_acc); add_op_floor(op_graph, FloorDescriptor(), op_acc, op_dst); const ClWorkloadContext workload_ctx{ GpuInfo{ CLScheduler::get().target() } }; ClWorkload workload; build(workload, op_graph, workload_ctx); ClCompositeOperator op; op.configure(cl_compile_ctx, workload); // Configure and add tensors. CLTensor t_input1{}; CLTensor t_input2{}; CLTensor t_dst{}; // Init Tensors t_input1.allocator()->init(input1_info); t_input2.allocator()->init(input2_info); t_dst.allocator()->init(dst_info); // Allocate and fill tensors t_input1.allocator()->allocate(); t_input2.allocator()->allocate(); t_dst.allocator()->allocate(); fill(CLAccessor(t_input1), 0, library.get()); fill(CLAccessor(t_input2), 1, library.get()); // "Pack" tensors OpTensorBinding bp_tensors({ { op_input1, &t_input1 }, { op_input2, &t_input2 }, { op_dst, &t_dst } }); // Populate prepare and run pack-maps (including allocating aux tensors) ClAuxTensorData aux_tensor_data{}; TensorPackMap prepare_pack_map{}; TensorPackMap run_pack_map{}; bind_tensors(aux_tensor_data, prepare_pack_map, run_pack_map, workload, bp_tensors); op.prepare(prepare_pack_map); op.run(run_pack_map); RelativeTolerance tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */ validate(CLAccessor(t_dst), ref_dst_nchw, tolerance_f32); } TEST_CASE(Dconv2dAddDiv, framework::DatasetMode::ALL) { // output = div(divend, add(addend, conv2d1x1(direct_conv)(input, weights, bias))) const auto data_type = DataType::F32; const auto data_layout = DataLayout::NHWC; const auto input_shape = TensorShape(384, 12, 12); const auto weight_shape = TensorShape(384, 1, 1, 16); const auto dst_shape = TensorShape(16, 12, 12); // Tensor Info auto input_info = TensorInfo(input_shape, 1, data_type, data_layout); auto weight_info = TensorInfo(weight_shape, 1, data_type, data_layout); auto addend_info = TensorInfo(dst_shape, 1, data_type, data_layout); auto divend_info = TensorInfo(dst_shape, 1, data_type, data_layout); auto acc_info = TensorInfo(); // Intermediate tensor for conv auto acc_1_info = TensorInfo(); auto dst_info = TensorInfo(); Conv2dDescriptor conv2d_desc{}; ElementwiseDescriptor add_desc{ ArithmeticOperation::ADD }; ElementwiseDescriptor div_desc{ ArithmeticOperation::DIV }; CLScheduler::get().default_reinit(); const auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); OperatorGraph op_graph; const auto op_input = add_tensor(op_graph, input_info); const auto op_weight = add_tensor(op_graph, weight_info); const auto op_addend = add_tensor(op_graph, addend_info); const auto op_divend = add_tensor(op_graph, divend_info); const auto op_acc = add_tensor(op_graph, acc_info); // temp accumulator; TensorInfo to be inferred const auto op_acc_1 = add_tensor(op_graph, acc_1_info); // temp accumulator; TensorInfo to be inferred const auto op_dst = add_tensor(op_graph, dst_info); auto conv2d = add_op_conv2d(op_graph, conv2d_desc, op_input, op_weight, op_acc); force_conv2d_method(op_graph, conv2d, ConvolutionMethod::DIRECT); add_op_elementwise_op(op_graph, add_desc, op_acc, op_addend, op_acc_1); add_op_elementwise_op(op_graph, div_desc, op_acc_1, op_divend, op_dst); const ClWorkloadContext workload_ctx{ GpuInfo{ CLScheduler::get().target() } }; ClWorkload workload; build(workload, op_graph, workload_ctx); ClCompositeOperator op; op.configure(cl_compile_ctx, workload); // Construct tensors CLTensor t_input{}; CLTensor t_weight{}; CLTensor t_addend{}; CLTensor t_divend{}; CLTensor t_dst{}; // Init tensors t_input.allocator()->init(input_info); t_weight.allocator()->init(weight_info); t_divend.allocator()->init(divend_info); t_addend.allocator()->init(addend_info); t_dst.allocator()->init(dst_info); // Allocate and fill tensors t_input.allocator()->allocate(); t_weight.allocator()->allocate(); t_divend.allocator()->allocate(); t_addend.allocator()->allocate(); t_dst.allocator()->allocate(); // Fill fill(CLAccessor(t_input), 0, library.get()); fill(CLAccessor(t_weight), 1, library.get()); fill(CLAccessor(t_addend), 2, library.get()); fill(CLAccessor(t_divend), 3, library.get()); // Pack tensors OpTensorBinding bp_tensors({ { op_input, &t_input }, { op_weight, &t_weight }, { op_addend, &t_addend }, { op_divend, &t_divend }, { op_dst, &t_dst } }); // Populate prepare and run pack-maps (including allocating aux tensors) ClAuxTensorData aux_tensor_data{}; TensorPackMap prepare_pack_map{}; TensorPackMap run_pack_map{}; bind_tensors(aux_tensor_data, prepare_pack_map, run_pack_map, workload, bp_tensors); op.prepare(prepare_pack_map); op.run(run_pack_map); // Create reference SimpleTensor ref_input{ input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; SimpleTensor ref_weight{ weight_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; SimpleTensor ref_bias_placeholder{ dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; SimpleTensor ref_addend{ dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; SimpleTensor ref_divend{ dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC }; // Fill reference fill(ref_input, 0, library.get()); fill(ref_weight, 1, library.get()); fill(ref_addend, 2, library.get()); fill(ref_divend, 3, library.get()); auto ref_input_nchw = reference::permute(ref_input, PermutationVector(1U, 2U, 0U)); auto ref_weight_nchw = reference::permute(ref_weight, PermutationVector(1U, 2U, 0U)); auto ref_bias_placeholder_nchw = reference::permute(ref_bias_placeholder, PermutationVector(1U, 2U, 0U)); auto ref_addend_nchw = reference::permute(ref_addend, PermutationVector(1U, 2U, 0U)); auto ref_divend_nchw = reference::permute(ref_divend, PermutationVector(1U, 2U, 0U)); auto dst_shape_nchw = dst_shape; permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U)); PadStrideInfo legacy_pad_stride(conv2d_desc.stride.x(), conv2d_desc.stride.y(), conv2d_desc.pad.left, conv2d_desc.pad.right, conv2d_desc.pad.top, conv2d_desc.pad.bottom, DimensionRoundingType{}); auto ref_acc_nchw = reference::arithmetic_operation( ArithmeticOperation::ADD, ref_addend_nchw, reference::convolution_layer(ref_input_nchw, ref_weight_nchw, ref_bias_placeholder_nchw, dst_shape_nchw, legacy_pad_stride, conv2d_desc.dilation), data_type, ConvertPolicy{}); auto ref_t_dst_nchw = reference::arithmetic_operation( ArithmeticOperation::DIV, ref_acc_nchw, ref_divend_nchw, data_type, ConvertPolicy{}); const auto ref_t_dst = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U)); RelativeTolerance tolerance_f32(0.001f); validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32); } TEST_SUITE_END() // ArbitraryFusion TEST_SUITE_END() // DYNAMIC_FUSION TEST_SUITE_END() // UNIT TEST_SUITE_END() // CL } // namespace validation } // namespace test } // namespace arm_compute #endif /* ENABLE_EXPERIMENTAL_DYNAMIC_FUSION */