/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Types.h" #include "arm_compute/runtime/CL/CLTensor.h" #include "arm_compute/runtime/CL/CLTensorAllocator.h" #include "arm_compute/runtime/CL/functions/CLIndirectConvolutionLayer.h" #include "tests/CL/CLAccessor.h" #include "tests/datasets/ShapeDatasets.h" #include "tests/framework/Macros.h" #include "tests/validation/Validation.h" #include "tests/validation/fixtures/DirectConvolutionLayerFixture.h" // Note: Since the interface of indirect convolution is the same of direct convolution, we can reuse // the direct convolution fixture namespace arm_compute { namespace test { namespace validation { namespace { RelativeTolerance tolerance_fp16(half(0.2)); /**< Tolerance for floating point tests */ RelativeTolerance tolerance_fp32(0.05f); /**< Tolerance for floating point tests */ constexpr float abs_tolerance_f32(0.0001f); /**< Absolute tolerance for FP32 tests*/ constexpr float tolerance_num = 0.07f; /**< Tolerance number */ /** Activation function Dataset*/ const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 0.5f) }); } // namespace TEST_SUITE(CL) TEST_SUITE(IndirectConvolutionLayer) /** Check whether the configuration of a indirect convolution layer with no * bias leads to a successful run. */ TEST_CASE(NoBias, framework::DatasetMode::PRECOMMIT) { const TensorShape src_shape_nhwc = TensorShape(8U, 27U, 13U); const TensorShape wei_shape_nhwc = TensorShape(8U, 3U, 3U, 4U); const TensorShape bia_shape = TensorShape(4U); const TensorShape dst_shape_nhwc = TensorShape(4U, 25U, 11U); constexpr DataType dt = DataType::F32; constexpr DataLayout data_layout = DataLayout::NHWC; auto src_nhwc = create_tensor(src_shape_nhwc, dt, 1, QuantizationInfo(), data_layout); auto wei_nhwc = create_tensor(wei_shape_nhwc, dt, 1, QuantizationInfo(), data_layout); auto dst_nhwc = create_tensor(dst_shape_nhwc, dt, 1, QuantizationInfo(), data_layout); TensorShape src_shape_nchw = src_shape_nhwc; TensorShape wei_shape_nchw = wei_shape_nhwc; TensorShape dst_shape_nchw = dst_shape_nhwc; permute(src_shape_nchw, PermutationVector(1U, 2U, 0U)); permute(wei_shape_nchw, PermutationVector(1U, 2U, 0U, 3U)); permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U)); const PadStrideInfo conv_info = PadStrideInfo(1, 1, 0, 0); // Create indirect Convolution function CLIndirectConvolutionLayer conv{}; conv.configure(&src_nhwc, &wei_nhwc, nullptr, &dst_nhwc, conv_info); src_nhwc.allocator()->allocate(); wei_nhwc.allocator()->allocate(); dst_nhwc.allocator()->allocate(); library->fill_tensor_value(CLAccessor(src_nhwc), 1.f); library->fill_tensor_value(CLAccessor(wei_nhwc), 1.f); conv.run(); // Compute reference to compare SimpleTensor ref_src{ src_shape_nchw, dt }; SimpleTensor ref_wei{ wei_shape_nchw, dt }; SimpleTensor ref_bia{ bia_shape, dt }; library->fill_tensor_value(ref_src, 1.f); library->fill_tensor_value(ref_wei, 1.f); // No bias library->fill_tensor_value(ref_bia, 0.f); auto ref_dst = reference::convolution_layer(ref_src, ref_wei, ref_bia, dst_shape_nchw, conv_info); validate(CLAccessor(dst_nhwc), ref_dst); } /** Check whether the case of rectangle kernels i.e. when width and height of the weight_shape are not equal * would lead to successful run */ TEST_CASE(NonSquareKernel, framework::DatasetMode::PRECOMMIT) { const TensorShape src_shape_nhwc = TensorShape(3U, 33U, 27U); const TensorShape wei_shape_nhwc = TensorShape(3U, 5U, 7U, 4U); // non-square kernel const TensorShape bia_shape = TensorShape(4U); const TensorShape dst_shape_nhwc = TensorShape(4U, 11U, 12U); constexpr DataType dt = DataType::F32; constexpr DataLayout data_layout = DataLayout::NHWC; auto src_nhwc = create_tensor(src_shape_nhwc, dt, 1, QuantizationInfo(), data_layout); auto wei_nhwc = create_tensor(wei_shape_nhwc, dt, 1, QuantizationInfo(), data_layout); auto dst_nhwc = create_tensor(dst_shape_nhwc, dt, 1, QuantizationInfo(), data_layout); TensorShape src_shape_nchw = src_shape_nhwc; TensorShape wei_shape_nchw = wei_shape_nhwc; TensorShape dst_shape_nchw = dst_shape_nhwc; permute(src_shape_nchw, PermutationVector(1U, 2U, 0U)); permute(wei_shape_nchw, PermutationVector(1U, 2U, 0U, 3U)); permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U)); const PadStrideInfo conv_info = PadStrideInfo(3, 2, 1, 1, 2, 0, DimensionRoundingType::FLOOR); // Create indirect convolution function CLIndirectConvolutionLayer conv{}; conv.configure(&src_nhwc, &wei_nhwc, nullptr, &dst_nhwc, conv_info); src_nhwc.allocator()->allocate(); wei_nhwc.allocator()->allocate(); dst_nhwc.allocator()->allocate(); library->fill_tensor_value(CLAccessor(src_nhwc), 1.f); library->fill_tensor_value(CLAccessor(wei_nhwc), 1.f); conv.run(); // Compute reference to compare SimpleTensor ref_src{ src_shape_nchw, dt }; SimpleTensor ref_wei{ wei_shape_nchw, dt }; SimpleTensor ref_bia{ bia_shape, dt }; library->fill_tensor_value(ref_src, 1.f); library->fill_tensor_value(ref_wei, 1.f); // No bias library->fill_tensor_value(ref_bia, 0.f); auto ref_dst = reference::convolution_layer(ref_src, ref_wei, ref_bia, dst_shape_nchw, conv_info); validate(CLAccessor(dst_nhwc), ref_dst); } // *INDENT-OFF* // clang-format off // Note: Since the interface of indirect convolution is the same of direct convolution, we can reuse // the direct convolution fixture template using CLIndirectConvolutionLayerFixture = DirectConvolutionValidationFixture; template using CLIndirectConvolutionLayerMixedDataLayoutFixture = DirectConvolutionValidationFixture; TEST_SUITE(NHWC) TEST_SUITE(FP16) FIXTURE_DATA_TEST_CASE(RunSmall, CLIndirectConvolutionLayerFixture, framework::DatasetMode::PRECOMMIT, combine(combine(combine(zip(zip(zip(zip(zip(zip( framework::dataset::make("InputShape", { TensorShape(27U, 13U, 23U), TensorShape(19U, 5U, 16U, 4U), TensorShape(13U, 5U, 17U, 2U), TensorShape(32U, 37U, 13U) } ), framework::dataset::make("StrideX", { 1, 3, 1, 1 })), framework::dataset::make("StrideY", { 1, 3, 2, 1 })), framework::dataset::make("PadX", { 1, 3, 0, 4 })), framework::dataset::make("PadY", { 1, 3, 0, 4 })), framework::dataset::make("KernelSize", { 3, 8, 1, 9 })), framework::dataset::make("NumKernels", { 17, 3, 1, 19 })), framework::dataset::make("DataType", DataType::F16)), framework::dataset::make("ActivationInfo", ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU) )), framework::dataset::make("DataLayout", DataLayout::NHWC))) { validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num); } FIXTURE_DATA_TEST_CASE(RunLarge, CLIndirectConvolutionLayerFixture, framework::DatasetMode::NIGHTLY, combine(combine(combine(zip(zip(zip(zip(zip(zip( framework::dataset::make("InputShape", { TensorShape(800U, 800U, 3U) } ), framework::dataset::make("StrideX", { 1 })), framework::dataset::make("StrideY", { 1 })), framework::dataset::make("PadX", { 1 })), framework::dataset::make("PadY", { 1 })), framework::dataset::make("KernelSize", { 9 })), framework::dataset::make("NumKernels", { 3 })), framework::dataset::make("DataType", DataType::F16)), framework::dataset::make("ActivationInfo", ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::IDENTITY) )), framework::dataset::make("DataLayout", DataLayout::NHWC))) { validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num); } TEST_SUITE_END() // FP16 TEST_SUITE(FP32) FIXTURE_DATA_TEST_CASE(RunSmall, CLIndirectConvolutionLayerFixture, framework::DatasetMode::PRECOMMIT, combine(combine(combine(zip(zip(zip(zip(zip(zip( framework::dataset::make("InputShape", { TensorShape(27U, 13U, 23U), TensorShape(19U, 5U, 16U, 4U), TensorShape(13U, 5U, 17U, 2U), TensorShape(32U, 37U, 13U) } ), framework::dataset::make("StrideX", { 1, 3, 1, 1 })), framework::dataset::make("StrideY", { 1, 3, 2, 1 })), framework::dataset::make("PadX", { 1, 3, 0, 4 })), framework::dataset::make("PadY", { 1, 3, 0, 4 })), framework::dataset::make("KernelSize", { 3, 8, 1, 9 })), framework::dataset::make("NumKernels", { 17, 3, 1, 19 })), framework::dataset::make("DataType", DataType::F32)), framework::dataset::make("ActivationInfo", ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU) )), framework::dataset::make("DataLayout", DataLayout::NHWC))) { validate(CLAccessor(_target), _reference, tolerance_fp32, 0.0, abs_tolerance_f32); } FIXTURE_DATA_TEST_CASE(RunMixedDataLayout, CLIndirectConvolutionLayerMixedDataLayoutFixture, framework::DatasetMode::PRECOMMIT, combine(combine(combine(zip(zip(zip(zip(zip(zip( framework::dataset::make("InputShape", { TensorShape(27U, 13U, 23U), TensorShape(19U, 5U, 16U, 4U), TensorShape(13U, 5U, 17U, 2U), TensorShape(32U, 37U, 13U) } ), framework::dataset::make("StrideX", { 1 })), framework::dataset::make("StrideY", { 2 })), framework::dataset::make("PadX", { 1 })), framework::dataset::make("PadY", { 3 })), framework::dataset::make("KernelSize", { 3 })), framework::dataset::make("NumKernels", { 3 })), framework::dataset::make("DataType", DataType::F32)), framework::dataset::make("ActivationInfo", ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU) )), framework::dataset::make("DataLayout", DataLayout::NHWC))) { validate(CLAccessor(_target), _reference, tolerance_fp32, 0.0, abs_tolerance_f32); } FIXTURE_DATA_TEST_CASE(RunLarge, CLIndirectConvolutionLayerFixture, framework::DatasetMode::NIGHTLY, combine(combine(combine(zip(zip(zip(zip(zip(zip( framework::dataset::make("InputShape", { TensorShape(800U, 800U, 3U) } ), framework::dataset::make("StrideX", { 1 })), framework::dataset::make("StrideY", { 1 })), framework::dataset::make("PadX", { 1 })), framework::dataset::make("PadY", { 1 })), framework::dataset::make("KernelSize", { 9 })), framework::dataset::make("NumKernels", { 3 })), framework::dataset::make("DataType", DataType::F32)), framework::dataset::make("ActivationInfo", ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::IDENTITY) )), framework::dataset::make("DataLayout", DataLayout::NHWC))) { validate(CLAccessor(_target), _reference, tolerance_fp32, 0.0, abs_tolerance_f32); } TEST_SUITE_END() // FP32 TEST_SUITE_END() // NHWC TEST_SUITE_END() // IndirectConvolutionLayer TEST_SUITE_END() // CL } // namespace validation } // namespace test } // namespace arm_compute