/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph.h" #include "support/ToolchainSupport.h" #include "tests/NEON/Accessor.h" #include "tests/validation/Validation.h" #include "tests/validation/reference/FullyConnectedLayer.h" #include "tests/validation/reference/Permute.h" #include "utils/CommonGraphOptions.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include "ValidateExample.h" #include using namespace arm_compute::utils; using namespace arm_compute::graph::frontend; using namespace arm_compute::graph_utils; using namespace arm_compute::graph; using namespace arm_compute; using namespace arm_compute::test; using namespace arm_compute::test::validation; namespace { /** Structure holding all the input tensor graph parameters */ struct TensorParams { int width{ 1 }; int height{ 1 }; int fm{ 1 }; int batch{ 1 }; QuantizationInfo quant_info{ 1.0f, 0 }; uint64_t range_low{ 0 }; uint64_t range_high{ 16 }; }; /** Structure holding all the verification graph parameters */ struct VerificationParams { float absolute_tolerance{ -1.f }; float relative_tolerance{ -1.f }; float tolerance_number{ -1.f }; }; /** Structure holding all the common graph parameters */ struct FrameworkParams { bool help{ false }; int threads{ 0 }; arm_compute::graph::Target target{ arm_compute::graph::Target::NEON }; }; /** Structure holding all the fully_connected layer graph parameters */ struct FullyConnectedParams { arm_compute::DataType data_type{ DataType::F32 }; arm_compute::DataLayout data_layout{ DataLayout::NCHW }; FullyConnectedLayerInfo info{}; int num_outputs{ 1 }; }; /** Structure holding all the graph Example parameters */ struct ExampleParams { FrameworkParams common_params{}; TensorParams input{}; TensorParams weights{}; TensorParams output{}; VerificationParams verification{}; FullyConnectedParams fully_connected{}; }; /** Formatted output of the fully_connectedParams type * * @param[out] os Output stream. * @param[in] common_params fully_connected parameters to output * * @return Modified output stream. */ ::std::ostream &operator<<(::std::ostream &os, const ExampleParams &common_params) { std::string false_str = std::string("false"); std::string true_str = std::string("true"); os << "Threads : " << common_params.common_params.threads << std::endl; os << "Target : " << common_params.common_params.target << std::endl; os << "Data type : " << common_params.fully_connected.data_type << std::endl; os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")" << std::endl; os << "Number of outputs : " << common_params.fully_connected.num_outputs << std::endl; return os; } /** fully_connected command line options used to configure the graph examples * * (Similar to common options) * The options in this object get populated when "parse()" is called on the parser used to construct it. * The expected workflow is: * * CommandLineParser parser; * CommonOptions options( parser ); * parser.parse(argc, argv); */ class FullyConnectedOptions final { public: explicit FullyConnectedOptions(CommandLineParser &parser) noexcept : width(parser.add_option>("width", 3)), batch(parser.add_option>("batch", 1)), help(parser.add_option("help")), threads(parser.add_option>("threads")), target(), data_type(), absolute_tolerance(parser.add_option>("abs_tolerance", -1.0f)), relative_tolerance(parser.add_option>("rel_tolerance", -1.0f)), tolerance_number(parser.add_option>("tolerance_num", -1.0f)), input_scale(parser.add_option>("input_scale", 1.0f)), input_offset(parser.add_option>("input_offset", 0)), weights_scale(parser.add_option>("weights_scale", 1.0f)), weights_offset(parser.add_option>("weights_offset", 0)), output_scale(parser.add_option>("output_scale", 1.0f)), output_offset(parser.add_option>("output_offset", 0)), num_outputs(parser.add_option>("num_outputs", 1)), input_range_low(parser.add_option>("input_range_low")), input_range_high(parser.add_option>("input_range_high")), weights_range_low(parser.add_option>("weights_range_low")), weights_range_high(parser.add_option>("weights_range_high")) { const std::set supported_targets { Target::NEON, Target::CL, Target::GC, }; const std::set supported_data_types { DataType::F16, DataType::F32, DataType::QASYMM8, }; target = parser.add_option>("target", supported_targets, Target::NEON); data_type = parser.add_option>("type", supported_data_types, DataType::F32); target->set_help("Target to execute on"); data_type->set_help("Data type to use"); help->set_help("Show this help message"); width->set_help("Set Input dimension width"); batch->set_help("Set Input dimension batch"); absolute_tolerance->set_help("Absolute tolerance used for verification"); relative_tolerance->set_help("Absolute tolerance used for verification"); tolerance_number->set_help("Absolute tolerance used for verification"); input_scale->set_help("Quantization scale from QASYMM8"); input_offset->set_help("Quantization offset from QASYMM8"); weights_scale->set_help("Quantization scale from QASYMM8"); weights_offset->set_help("Quantization offset from QASYMM8"); output_scale->set_help("Quantization scale from QASYMM8"); output_offset->set_help("Quantization offset from QASYMM8"); num_outputs->set_help("Number of outputs."); input_range_low->set_help("Lower bound for input randomization range"); input_range_high->set_help("Lower bound for input randomization range"); weights_range_low->set_help("Lower bound for input randomization range"); weights_range_high->set_help("Lower bound for input randomization range"); } /** Prevent instances of this class from being copied (As this class contains pointers) */ FullyConnectedOptions(const FullyConnectedOptions &) = delete; /** Prevent instances of this class from being copied (As this class contains pointers) */ FullyConnectedOptions &operator=(const FullyConnectedOptions &) = delete; /** Allow instances of this class to be moved */ FullyConnectedOptions(FullyConnectedOptions &&) noexcept(true) = default; /** Allow instances of this class to be moved */ FullyConnectedOptions &operator=(FullyConnectedOptions &&) noexcept(true) = default; /** Default destructor */ ~FullyConnectedOptions() = default; SimpleOption *width; /**< Input width */ SimpleOption *batch; /**< Input batch */ ToggleOption *help; /**< show help message */ SimpleOption *threads; /**< Number of threads option */ EnumOption *target; /**< Graph execution target */ EnumOption *data_type; /**< Graph data type */ SimpleOption *absolute_tolerance; /**< Absolute tolerance used in verification */ SimpleOption *relative_tolerance; /**< Relative tolerance used in verification */ SimpleOption *tolerance_number; /**< Tolerance number used in verification */ SimpleOption *input_scale; /**< Input Quantization scale from QASSYMM8 */ SimpleOption *input_offset; /**< Input Quantization offset from QASSYMM8 */ SimpleOption *weights_scale; /**< Weights Quantization scale from QASSYMM8 */ SimpleOption *weights_offset; /**< Weights Quantization offset from QASSYMM8 */ SimpleOption *output_scale; /**< Output Quantization scale from QASSYMM8 */ SimpleOption *output_offset; /**< Output Quantization offset from QASSYMM8 */ SimpleOption *num_outputs; /**< Number of outputs. */ SimpleOption *input_range_low; /**< Lower bound for input randomization range */ SimpleOption *input_range_high; /**< Upper bound for input randomization range */ SimpleOption *weights_range_low; /**< Lower bound for weights randomization range */ SimpleOption *weights_range_high; /**< Upper bound for weights randomization range */ }; /** Consumes the fully_connected graph options and creates a structure containing any information * * @param[in] options Options to consume * * @return fully_connectedparams structure containing the common graph parameters */ ExampleParams consume_fully_connected_graph_parameters(FullyConnectedOptions &options) { ExampleParams common_params; common_params.common_params.help = options.help->is_set() ? options.help->value() : false; common_params.common_params.threads = options.threads->value(); common_params.common_params.target = options.target->value(); common_params.input.width = options.width->value(); common_params.input.batch = options.batch->value(); common_params.input.quant_info.scale = options.input_scale->value(); common_params.input.quant_info.offset = options.input_offset->value(); common_params.input.range_low = options.input_range_low->value(); common_params.input.range_high = options.input_range_high->value(); common_params.weights.quant_info.scale = options.weights_scale->value(); common_params.weights.quant_info.offset = options.weights_offset->value(); common_params.weights.range_low = options.weights_range_low->value(); common_params.weights.range_high = options.weights_range_high->value(); common_params.output.quant_info.scale = options.output_scale->value(); common_params.output.quant_info.offset = options.output_offset->value(); common_params.fully_connected.data_type = options.data_type->value(); common_params.fully_connected.num_outputs = options.num_outputs->value(); common_params.verification.absolute_tolerance = options.absolute_tolerance->value(); common_params.verification.relative_tolerance = options.relative_tolerance->value(); common_params.verification.tolerance_number = options.tolerance_number->value(); return common_params; } /** fully_connectedLayer Graph example validation accessor class */ template class FullyConnectedVerifyAccessor final : public graph::ITensorAccessor { public: using TBias = typename std::conditional::type, uint8_t>::value, int32_t, D>::type; /** Constructor * * @param[in] params fully_connected parameters */ explicit FullyConnectedVerifyAccessor(ExampleParams ¶ms) : _params(params) { } // Inherited methods overridden: bool access_tensor(ITensor &tensor) override { const RelativeTolerance rel_tolerance(relative_tolenace(_params.verification.relative_tolerance)); /**< Relative tolerance */ const AbsoluteTolerance abs_tolerance(absolute_tolerance(_params.verification.absolute_tolerance)); /**< Absolute tolerance */ const float tolerance_num(tolerance_number(_params.verification.tolerance_number)); /**< Tolerance number */ // Calculate Tensor shapes for verification const TensorShape input_shape = TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch); const TensorDescriptor input_descriptor = TensorDescriptor(input_shape, _params.fully_connected.data_type, _params.input.quant_info); const TensorDescriptor weights_descriptor = FullyConnectedLayerNode::compute_weights_descriptor(input_descriptor, _params.fully_connected.num_outputs, _params.fully_connected.info, _params.weights.quant_info); const TensorDescriptor output_desciptor = FullyConnectedLayerNode::compute_output_descriptor(input_descriptor, _params.fully_connected.num_outputs, _params.output.quant_info); //Create Input tensors SimpleTensor src{ input_descriptor.shape, _params.fully_connected.data_type, 1, input_descriptor.quant_info }; SimpleTensor weights{ weights_descriptor.shape, _params.fully_connected.data_type, 1, weights_descriptor.quant_info }; SimpleTensor bias{ TensorShape(tensor.info()->tensor_shape().x()), _params.fully_connected.data_type, 1, _params.input.quant_info }; //Fill the tensors with random values fill_tensor(src, 0, static_cast(_params.input.range_low), static_cast(_params.input.range_high)); fill_tensor(weights, 1, static_cast(_params.weights.range_low), static_cast(_params.weights.range_high)); fill_tensor(bias, 2, static_cast(_params.input.range_low), static_cast(_params.input.range_high)); //Calculate reference SimpleTensor output = reference::fully_connected_layer(src, weights, bias, output_desciptor.shape, _params.output.quant_info); arm_compute::test::validation::validate(Accessor(tensor), output, rel_tolerance, tolerance_num, abs_tolerance); return false; } private: /** Fill tensor with Random values. * * Validate the given tensor against the reference result. * * @param[out] tensor The tensor we want to file * @param[in] seed seed for the randomization function * @param[in] low lower bound for random values * @param[in] high upper bound for random values * * @return None. */ template void fill_tensor(arm_compute::test::SimpleTensor &tensor, std::random_device::result_type seed, T low, T high) { std::mt19937 gen(seed); switch(tensor.data_type()) { case arm_compute::DataType::QASYMM8: { const uint8_t qasymm8_low = tensor.quantization_info().quantize(low, RoundingPolicy::TO_NEAREST_UP); const uint8_t qasymm8_high = tensor.quantization_info().quantize(high, RoundingPolicy::TO_NEAREST_UP); std::uniform_int_distribution distribution(qasymm8_low, qasymm8_high); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = tensor.quantization_info().quantize(distribution(gen), RoundingPolicy::TO_NEAREST_UP); } break; } case arm_compute::DataType::S32: { std::uniform_int_distribution distribution(static_cast(low), static_cast(high)); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = distribution(gen); } break; } case arm_compute::DataType::F16: { std::uniform_real_distribution distribution(static_cast(low), static_cast(high)); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = static_cast(distribution(gen)); } break; } case arm_compute::DataType::F32: { std::uniform_real_distribution distribution(static_cast(low), static_cast(high)); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = distribution(gen); } break; } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** Select relative tolerance. * * Select relative tolerance if not supplied by user. * * @param[in] user_value supplied relative tolerance. -1 designates no user input * * @return Appropriate relative tolerance. */ float relative_tolenace(float user_value) { const std::map> relative_tolerance { { arm_compute::graph::Target::CL, { { DataType::F16, 0.2f }, { DataType::F32, 0.05f }, { DataType::QASYMM8, 1.0f } } }, { arm_compute::graph::Target::NEON, { { DataType::F16, 0.2f }, { DataType::F32, 0.01f }, { DataType::QASYMM8, 1.0f } } } }; if(user_value == -1) { return relative_tolerance.at(_params.common_params.target).at(_params.fully_connected.data_type); } return user_value; } /** Select absolute tolerance. * * Select absolute tolerance if not supplied by user. * * @param[in] user_value supplied absolute tolerance. -1 designates no user input * * @return Appropriate absolute tolerance. */ float absolute_tolerance(float user_value) { const std::map> absolute_tolerance { { Target::CL, { { DataType::F16, 0.0f }, { DataType::F32, 0.0001f }, { DataType::QASYMM8, 1.0f } } }, { Target::NEON, { { DataType::F16, 0.3f }, { DataType::F32, 0.1f }, { DataType::QASYMM8, 1.0f } } } }; if(user_value == -1) { return absolute_tolerance.at(_params.common_params.target).at(_params.fully_connected.data_type); } return user_value; } /** Select tolerance number. * * Select tolerance number if not supplied by user. * * @param[in] user_value supplied tolerance number. -1 designates no user input * * @return Appropriate tolerance number. */ float tolerance_number(float user_value) { const std::map> absolute_tolerance { { Target::CL, { { DataType::F16, 0.07f }, { DataType::F32, 0.07f }, { DataType::QASYMM8, 0.0f } } }, { Target::NEON, { { DataType::F16, 0.07f }, { DataType::F32, 0.0f }, { DataType::QASYMM8, 0.0f } } } }; if(user_value == -1) { return absolute_tolerance.at(_params.common_params.target).at(_params.fully_connected.data_type); } return user_value; } ExampleParams _params; }; /** Generates appropriate fully_connected verify accessor * * @param[in] params User supplied parameters for fully_connected. * * @return A fully_connected verify accessor for the requested datatype. */ inline std::unique_ptr get_fully_connected_verify_accessor(ExampleParams params) { switch(params.fully_connected.data_type) { case DataType::QASYMM8: { return arm_compute::support::cpp14::make_unique>( params); } case DataType::F16: { return arm_compute::support::cpp14::make_unique>( params); } case DataType::F32: { return arm_compute::support::cpp14::make_unique>( params); } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } } // namespace class Graphfully_connectedValidateExample final : public ValidateExample { public: Graphfully_connectedValidateExample() : graph(0, "fully_connected Graph example") { } bool do_setup(int argc, char **argv) override { CommandLineParser parser; FullyConnectedOptions Options(parser); parser.parse(argc, argv); ExampleParams params = consume_fully_connected_graph_parameters(Options); if(params.common_params.help) { parser.print_help(argv[0]); return false; } std::cout << params << std::endl; // Create input descriptor const TensorShape input_shape = TensorShape(params.input.width, params.input.height, params.input.fm, params.input.batch); const TensorDescriptor input_descriptor = TensorDescriptor(input_shape, params.fully_connected.data_type, params.input.quant_info, params.fully_connected.data_layout); const PixelValue lower = PixelValue(params.input.range_low, params.fully_connected.data_type, params.input.quant_info); const PixelValue upper = PixelValue(params.input.range_high, params.fully_connected.data_type, params.input.quant_info); const PixelValue weights_lower = PixelValue(params.weights.range_low, params.fully_connected.data_type, params.weights.quant_info); const PixelValue weights_upper = PixelValue(params.weights.range_high, params.fully_connected.data_type, params.weights.quant_info); graph << params.common_params.target << InputLayer(input_descriptor, get_random_accessor(lower, upper, 0)) << FullyConnectedLayer(params.fully_connected.num_outputs, get_random_accessor(weights_lower, weights_upper, 1), get_random_accessor(lower, upper, 2), params.fully_connected.info, params.weights.quant_info, params.output.quant_info) << OutputLayer(get_fully_connected_verify_accessor(params)); GraphConfig config; config.num_threads = params.common_params.threads; graph.finalize(params.common_params.target, config); return true; } void do_run() override { graph.run(); } void do_teardown() override { } private: Stream graph; }; /** Main program for Graph fully_connected test * * @param[in] argc Number of arguments * @param[in] argv Arguments ( Input dimensions [width, batch] * Fully connected [num_outputs,type] * Verification[tolerance_number,absolute_tolerance,relative_tolerance] ) * */ int main(int argc, char **argv) { return arm_compute::utils::run_example(argc, argv); }