/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph.h" #include "support/ToolchainSupport.h" #include "tests/NEON/Accessor.h" #include "tests/validation/Validation.h" #include "tests/validation/reference/ConvolutionLayer.h" #include "tests/validation/reference/Permute.h" #include "utils/CommonGraphOptions.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include "ValidateExample.h" #include using namespace arm_compute::utils; using namespace arm_compute::graph::frontend; using namespace arm_compute::graph_utils; using namespace arm_compute::graph; using namespace arm_compute; using namespace arm_compute::test; using namespace arm_compute::test::validation; namespace { /*Available Padding modes */ enum class PaddingMode { Valid, Same, Manual }; /** Stream Input operator for the PaddingMode type * * @param[in] stream Input stream. * @param[out] Mode Convolution parameters to output * * @return input stream. */ inline ::std::istream &operator>>(::std::istream &stream, PaddingMode &Mode) { static const std::map modes = { { "valid", PaddingMode::Valid }, { "same", PaddingMode::Same }, { "manual", PaddingMode::Manual } }; std::string value; stream >> value; try { Mode = modes.at(arm_compute::utility::tolower(value)); } catch(const std::out_of_range &) { throw std::invalid_argument(value); } return stream; } /** Formatted output of the PaddingMode type * * @param[out] os Output stream. * @param[in] Mode PaddingMode to output * * @return Modified output stream. */ inline ::std::ostream &operator<<(::std::ostream &os, PaddingMode Mode) { switch(Mode) { case PaddingMode::Valid: os << "Valid"; break; case PaddingMode::Same: os << "Same"; break; case PaddingMode::Manual: os << "Manual"; break; default: throw std::invalid_argument("Unsupported padding mode format"); } return os; } /** Structure holding all the input tensor graph parameters */ struct TensorParams { int width{ 0 }; int height{ 0 }; int fm{ 0 }; int batch{ 0 }; QuantizationInfo quant_info{ 1.0f, 0 }; std::string npy{}; uint64_t range_low{ 0 }; uint64_t range_high{ 16 }; }; /** Structure holding all the verification graph parameters */ struct VerificationParams { float absolute_tolerance{ -1.f }; float relative_tolerance{ -1.f }; float tolerance_number{ -1.f }; }; /** Structure holding all the common graph parameters */ struct FrameworkParams { bool help{ false }; int threads{ 0 }; arm_compute::graph::Target target{ arm_compute::graph::Target::NEON }; }; /** Structure holding all the Convolution layer graph parameters */ struct ConvolutionParams { arm_compute::DataType data_type{ DataType::F32 }; arm_compute::DataLayout data_layout{ DataLayout::NCHW }; arm_compute::graph::ConvolutionMethod convolution_method{ arm_compute::graph::ConvolutionMethod::Default }; /** Padding graph parameters */ int padding_top{ 0 }; int padding_bottom{ 0 }; int padding_left{ 0 }; int padding_right{ 0 }; int padding_stride_x{ 0 }; int padding_stride_y{ 0 }; PaddingMode padding_mode{ PaddingMode::Valid }; struct { struct { int X{ 0 }; int Y{ 0 }; } stride{}; PaddingMode mode{ PaddingMode::Valid }; } padding{}; }; /** Structure holding all the graph Example parameters */ struct ExampleParams { FrameworkParams common_params{}; TensorParams input{}; TensorParams weights{}; TensorParams bias{}; TensorParams output{}; VerificationParams verification{}; ConvolutionParams convolution{}; }; /** Formatted output of the ConvolutionParams type * * @param[out] os Output stream. * @param[in] common_params Convolution parameters to output * * @return Modified output stream. */ ::std::ostream &operator<<(::std::ostream &os, const ExampleParams &common_params) { os << "Threads : " << common_params.common_params.threads << std::endl; os << "Target : " << common_params.common_params.target << std::endl; os << "Data type : " << common_params.convolution.data_type << std::endl; os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")" << std::endl; os << "Weight dimensions(X,Y, Channels(same as input), OFM) : (" << common_params.weights.width << "," << common_params.weights.height << "," << common_params.input.fm << "," << common_params.weights.fm << ")" << std::endl; os << "Padding(top, bottom, left, right) (stride x, stride y) : (" << common_params.convolution.padding_top << "," << common_params.convolution.padding_bottom << "," << common_params.convolution.padding_left << "," << common_params.convolution.padding_right << ") (" << common_params.convolution.padding_stride_x << "," << common_params.convolution.padding_stride_y << ")" << std::endl; os << "Padding Mode: " << common_params.convolution.padding_mode << std::endl; os << "Convolution Method: " << common_params.convolution.convolution_method << std::endl; return os; } /** Convolution command line options used to configure the graph examples * * (Similar to common options) * The options in this object get populated when "parse()" is called on the parser used to construct it. * The expected workflow is: * * CommandLineParser parser; * CommonOptions options( parser ); * parser.parse(argc, argv); */ class ConvolutionOptions final { public: explicit ConvolutionOptions(CommandLineParser &parser) noexcept : width(parser.add_option>("width", 9)), height(parser.add_option>("height", 9)), channels(parser.add_option>("channels", 1)), batch(parser.add_option>("batch", 1)), weights_width(parser.add_option>("weights_width", 3)), weights_height(parser.add_option>("weights_height", 3)), OFM(parser.add_option>("OFM", 1)), padding_top(parser.add_option>("padding_top", 0)), padding_left(parser.add_option>("padding_left", 0)), padding_bottom(parser.add_option>("padding_bottom", 0)), padding_right(parser.add_option>("padding_right", 0)), stride_x(parser.add_option>("stride_x", 1)), stride_y(parser.add_option>("stride_y", 1)), help(parser.add_option("help")), threads(parser.add_option>("threads")), target(), data_type(), padding_mode(), conv_mode(), data_layout(), absolute_tolerance(parser.add_option>("abs_tolerance", -1.0f)), relative_tolerance(parser.add_option>("rel_tolerance", -1.0f)), tolerance_number(parser.add_option>("tolerance_num", -1.0f)), scale(parser.add_option>("scale", 1.0f)), offset(parser.add_option>("offset", 0)), weights_scale(parser.add_option>("weights_scale", 1.0f)), weights_offset(parser.add_option>("weights_offset", 0)), output_scale(parser.add_option>("output_scale", 1.0f)), output_offset(parser.add_option>("output_offset", 0)), input_range_low(parser.add_option>("input_range_low")), input_range_high(parser.add_option>("input_range_high")), weights_range_low(parser.add_option>("weights_range_low")), weights_range_high(parser.add_option>("weights_range_high")), input_npy(parser.add_option>("input_image")), output_npy(parser.add_option>("reference_image")), weights_npy(parser.add_option>("weights_npy")), bias_npy(parser.add_option>("bias_image")) { const std::set available_padding_modes { PaddingMode::Valid, PaddingMode::Same }; const std::set supported_targets { Target::NEON, Target::CL, Target::GC, }; const std::set supported_data_types { DataType::F16, DataType::F32, DataType::QASYMM8, }; const std::set supported_convolution_methods { arm_compute::graph::ConvolutionMethod::Default, arm_compute::graph::ConvolutionMethod::GEMM, arm_compute::graph::ConvolutionMethod::Winograd, arm_compute::graph::ConvolutionMethod::Direct }; const std::set supported_data_layouts { DataLayout::NHWC, DataLayout::NCHW, }; padding_mode = parser.add_option>("padding_mode", available_padding_modes, PaddingMode::Valid); target = parser.add_option>("target", supported_targets, Target::NEON); data_type = parser.add_option>("type", supported_data_types, DataType::F32); conv_mode = parser.add_option>("convolution_method", supported_convolution_methods, arm_compute::graph::ConvolutionMethod::Default); data_layout = parser.add_option>("layout", supported_data_layouts, DataLayout::NHWC); target->set_help("Target to execute on"); data_type->set_help("Data type to use"); padding_mode->set_help("Set padding mode"); help->set_help("Show this help message"); width->set_help("Set Input dimension width"); height->set_help("Set Input dimension height"); channels->set_help("Set Input dimension channels"); batch->set_help("Set Input dimension batch"); weights_width->set_help("Set weights_dimensions width"); weights_height->set_help("Set weights_dimensions height"); OFM->set_help("Set OFM"); padding_top->set_help("Set padding top"); padding_bottom->set_help("Set padding bottom"); padding_left->set_help("Set padding left"); padding_right->set_help("Set padding right"); stride_x->set_help("Set padding stride x"); stride_y->set_help("Set padding stride y"); conv_mode->set_help("Set convolution method"); data_layout->set_help("Data layout to use"); absolute_tolerance->set_help("Absolute tolerance used for verification"); relative_tolerance->set_help("Absolute tolerance used for verification"); tolerance_number->set_help("Absolute tolerance used for verification"); scale->set_help("Quantization scale from QASYMM8"); offset->set_help("Quantization offset from QASYMM8"); weights_scale->set_help("Quantization scale from QASYMM8"); weights_offset->set_help("Quantization offset from QASYMM8"); output_scale->set_help("Quantization scale from QASYMM8"); output_offset->set_help("Quantization offset from QASYMM8"); input_npy->set_help("Use input .npy instead"); output_npy->set_help("Use .npy as a reference"); input_range_low->set_help("Lower bound for input randomization range"); input_range_high->set_help("Lower bound for input randomization range"); weights_range_low->set_help("Lower bound for input randomization range"); weights_range_high->set_help("Lower bound for input randomization range"); } /** Prevent instances of this class from being copied (As this class contains pointers) */ ConvolutionOptions(const ConvolutionOptions &) = delete; /** Prevent instances of this class from being copied (As this class contains pointers) */ ConvolutionOptions &operator=(const ConvolutionOptions &) = delete; /** Allow instances of this class to be moved */ ConvolutionOptions(ConvolutionOptions &&) noexcept(true) = default; /** Allow instances of this class to be moved */ ConvolutionOptions &operator=(ConvolutionOptions &&) noexcept(true) = default; /** Default destructor */ ~ConvolutionOptions() = default; SimpleOption *width; /**< Input width */ SimpleOption *height; /**< Input height */ SimpleOption *channels; /**< Input channels */ SimpleOption *batch; /**< Input batch */ SimpleOption *weights_width; /**< weights width */ SimpleOption *weights_height; /**< weights height */ SimpleOption *OFM; /**< Output Feature Map */ SimpleOption *padding_top; /**< Padding top */ SimpleOption *padding_left; /**< Padding left */ SimpleOption *padding_bottom; /**< Padding bottom */ SimpleOption *padding_right; /**< Padding right */ SimpleOption *stride_x; /**< Padding stride x */ SimpleOption *stride_y; /**< Padding stride y */ ToggleOption *help; /**< show help message */ SimpleOption *threads; /**< Number of threads option */ EnumOption *target; /**< Graph execution target */ EnumOption *data_type; /**< Graph data type */ EnumOption *padding_mode; /**< Padding mode */ EnumOption *conv_mode; /**< Convolution method */ EnumOption *data_layout; /**< Graph data layout */ SimpleOption *absolute_tolerance; /**< Absolute tolerance used in verification */ SimpleOption *relative_tolerance; /**< Relative tolerance used in verification */ SimpleOption *tolerance_number; /**< Tolerance number used in verification */ SimpleOption *scale; /**< Input Quantization scale from QASYMM8 */ SimpleOption *offset; /**< Input Quantization offset from QASYMM8 */ SimpleOption *weights_scale; /**< Weights Quantization scale from QASYMM8 */ SimpleOption *weights_offset; /**< Weights Quantization offset from QASYMM8 */ SimpleOption *output_scale; /**< Output Quantization scale from QASYMM8 */ SimpleOption *output_offset; /**< Output Quantization offset from QASYMM8 */ SimpleOption *input_range_low; /**< Lower bound for input randomization range */ SimpleOption *input_range_high; /**< Upper bound for input randomization range */ SimpleOption *weights_range_low; /**< Lower bound for weights randomization range */ SimpleOption *weights_range_high; /**< Upper bound for weights randomization range */ SimpleOption *input_npy; /**< Use input .npy image */ SimpleOption *output_npy; /**< Use output .npy image to verify*/ SimpleOption *weights_npy; /**< Use weights .npy image */ SimpleOption *bias_npy; /**< Use bias .npy image */ }; /** Consumes the convolution graph options and creates a structure containing any information * * @param[in] options Options to consume * * @return Convolutionparams structure containing the common graph parameters */ ExampleParams consume_covolution_graph_parameters(ConvolutionOptions &options) { ExampleParams common_params; common_params.common_params.help = options.help->is_set() ? options.help->value() : false; common_params.common_params.threads = options.threads->value(); common_params.common_params.target = options.target->value(); common_params.input.width = options.width->value(); common_params.input.height = options.height->value(); common_params.input.fm = options.channels->value(); common_params.input.batch = options.batch->value(); common_params.input.quant_info.scale = options.scale->value(); common_params.input.quant_info.offset = options.offset->value(); common_params.input.npy = options.input_npy->value(); common_params.input.range_low = options.input_range_low->value(); common_params.input.range_high = options.input_range_high->value(); common_params.weights.width = options.weights_width->value(); common_params.weights.height = options.weights_height->value(); common_params.weights.fm = options.OFM->value(); common_params.weights.npy = options.weights_npy->value(); common_params.weights.quant_info.scale = options.weights_scale->value(); common_params.weights.quant_info.offset = options.weights_offset->value(); common_params.weights.range_low = options.weights_range_low->value(); common_params.weights.range_high = options.weights_range_high->value(); common_params.bias.npy = options.bias_npy->value(); common_params.output.quant_info.scale = options.output_scale->value(); common_params.output.quant_info.offset = options.output_offset->value(); common_params.output.npy = options.output_npy->value(); common_params.convolution.padding_mode = options.padding_mode->value(); common_params.convolution.padding_top = options.padding_top->value(); common_params.convolution.padding_bottom = options.padding_bottom->value(); common_params.convolution.padding_left = options.padding_left->value(); common_params.convolution.padding_right = options.padding_right->value(); common_params.convolution.padding_stride_x = options.stride_x->value(); common_params.convolution.padding_stride_y = options.stride_y->value(); common_params.convolution.convolution_method = options.conv_mode->value(); common_params.convolution.data_type = options.data_type->value(); common_params.convolution.data_layout = options.data_layout->value(); common_params.verification.absolute_tolerance = options.absolute_tolerance->value(); common_params.verification.relative_tolerance = options.relative_tolerance->value(); common_params.verification.tolerance_number = options.tolerance_number->value(); return common_params; } /** Calculate stride information. * * Depending on the selected padding mode create the desired PadStrideInfo * * @param[in] params Convolution parameters supplied by the user. * * @return PadStrideInfo with the correct padding mode. */ inline PadStrideInfo calculate_convolution_padding(ExampleParams params) { switch(params.convolution.padding_mode) { case PaddingMode::Manual: { return PadStrideInfo(params.convolution.padding_stride_x, params.convolution.padding_stride_y, params.convolution.padding_left, params.convolution.padding_right, params.convolution.padding_top, params.convolution.padding_bottom, DimensionRoundingType::FLOOR); } case PaddingMode::Valid: { return PadStrideInfo(); } case PaddingMode::Same: { return arm_compute::calculate_same_pad(TensorShape(params.input.width, params.input.height), TensorShape(params.weights.width, params.weights.height), PadStrideInfo(params.convolution.padding_stride_x, params.convolution.padding_stride_y)); } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** ConvolutionLayer Graph example validation accessor class */ template class ConvolutionVerifyAccessor final : public graph::ITensorAccessor { public: using TBias = typename std::conditional::type, uint8_t>::value, int32_t, D>::type; /** Constructor * * @param[in] params Convolution parameters */ explicit ConvolutionVerifyAccessor(ExampleParams ¶ms) : _params(std::move(params)) { } // Inherited methods overriden: bool access_tensor(ITensor &tensor) override { if(_params.output.npy.empty()) { const RelativeTolerance rel_tolerance(relative_tolenace(_params.verification.relative_tolerance)); /**< Relative tolerance */ const AbsoluteTolerance abs_tolerance(absolute_tolerance(_params.verification.absolute_tolerance)); /**< Absolute tolerance */ const float tolerance_num(tolerance_number(_params.verification.tolerance_number)); /**< Tolerance number */ //Create Input tensors SimpleTensor src{ TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch), _params.convolution.data_type, 1, _params.input.quant_info }; SimpleTensor weights{ TensorShape(_params.weights.width, _params.weights.height, _params.weights.fm), _params.convolution.data_type, 1, _params.weights.quant_info }; SimpleTensor bias{ TensorShape(_params.input.height), _params.convolution.data_type, 1, _params.input.quant_info }; //Fill the tenors with random values fill_tensor(src, 0, static_cast(_params.input.range_low), static_cast(_params.input.range_high)); fill_tensor(weights, 1, static_cast(_params.weights.range_low), static_cast(_params.weights.range_high)); fill_tensor(bias, 2, static_cast(_params.input.range_low), static_cast(_params.input.range_high)); // Calculate padding information const PadStrideInfo padding_info = calculate_convolution_padding(_params); //Calculate reference SimpleTensor output = reference::convolution_layer(src, weights, bias, permute_shape(tensor.info()->tensor_shape(), _params.convolution.data_layout, DataLayout::NCHW), padding_info, Size2D(1, 1), 1, _params.output.quant_info); arm_compute::test::validation::validate(Accessor(tensor), output, rel_tolerance, tolerance_num, abs_tolerance); } else { //The user provided a reference file use an npy accessor to validate NumPyAccessor(_params.output.npy, tensor.info()->tensor_shape(), tensor.info()->data_type()).access_tensor(tensor); } return false; } private: /** Fill tensor with Random values. * * Validate the given tensor against the reference result. * * @param[out] tensor The tensor we want to file * @param[in] seed seed for the randomization function * @param[in] low lower bound for random values * @param[in] high upper bound for random values * * @return None. */ template void fill_tensor(arm_compute::test::SimpleTensor &tensor, std::random_device::result_type seed, T low, T high) { std::mt19937 gen(seed); switch(tensor.data_type()) { case arm_compute::DataType::QASYMM8: { uint8_t qasymm8_low = tensor.quantization_info().quantize(low, RoundingPolicy::TO_NEAREST_UP); uint8_t qasymm8_high = tensor.quantization_info().quantize(high, RoundingPolicy::TO_NEAREST_UP); std::uniform_int_distribution distribution(qasymm8_low, qasymm8_high); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = tensor.quantization_info().quantize(distribution(gen), RoundingPolicy::TO_NEAREST_UP); } break; } case arm_compute::DataType::S32: { std::uniform_int_distribution distribution(static_cast(low), static_cast(high)); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = distribution(gen); } break; } case arm_compute::DataType::F16: { std::uniform_real_distribution distribution(static_cast(low), static_cast(high)); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = static_cast(distribution(gen)); } break; } case arm_compute::DataType::F32: { std::uniform_real_distribution distribution(static_cast(low), static_cast(high)); for(int i = 0; i < tensor.num_elements(); ++i) { tensor[i] = distribution(gen); } break; } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** Select relative tolerance. * * Select relative tolerance if not supplied by user. * * @param[in] user_value supplied relative tolerance. -1 designates no user input * * @return Appropriate relative tolerance. */ float relative_tolenace(float user_value) { const std::map> relative_tolerance { { arm_compute::graph::Target::CL, { { DataType::F16, 0.2f }, { DataType::F32, 0.5f }, { DataType::QASYMM8, 1.0f } } }, { arm_compute::graph::Target::NEON, { { DataType::F16, 0.2f }, { DataType::F32, 0.01f }, { DataType::QASYMM8, 0.0f } } } }; if(user_value == -1) { if(_params.convolution.convolution_method == arm_compute::graph::ConvolutionMethod::Winograd && _params.convolution.data_type == DataType::F32 && _params.common_params.target == arm_compute::graph::Target::NEON) { return 0.05f; } else { return relative_tolerance.at(_params.common_params.target).at(_params.convolution.data_type); } } return user_value; } /** Select absolute tolerance. * * Select absolute tolerance if not supplied by user. * * @param[in] user_value supplied absolute tolerance. -1 designates no user input * * @return Appropriate absolute tolerance. */ float absolute_tolerance(float user_value) { const std::map> absolute_tolerance { { Target::CL, { { DataType::F16, 0.0f }, { DataType::F32, 0.0001f }, { DataType::QASYMM8, 0.0f } } }, { Target::NEON, { { DataType::F16, 0.2f }, { DataType::F32, 0.002f }, { DataType::QASYMM8, 0.0f } } } }; if(user_value == -1) { return absolute_tolerance.at(_params.common_params.target).at(_params.convolution.data_type); } return user_value; } /** Select tolerance number. * * Select tolerance number if not supplied by user. * * @param[in] user_value supplied tolerance number. -1 designates no user input * * @return Appropriate tolerance number. */ float tolerance_number(float user_value) { const std::map> absolute_tolerance { { Target::CL, { { DataType::F16, 0.07f }, { DataType::F32, 0.07f }, { DataType::QASYMM8, 0.0f } } }, { Target::NEON, { { DataType::F16, 0.07f }, { DataType::F32, 0.0f }, { DataType::QASYMM8, 0.0f } } } }; if(user_value == -1) { return absolute_tolerance.at(_params.common_params.target).at(_params.convolution.data_type); } return user_value; } ExampleParams _params; }; /** Generates appropriate convolution verify accessor * * @param[in] params User supplied parameters for convolution. * * @return A convolution verify accessor for the requested datatype. */ inline std::unique_ptr get_convolution_verify_accessor(ExampleParams params) { switch(params.convolution.data_type) { case DataType::QASYMM8: { return arm_compute::support::cpp14::make_unique>( params); } case DataType::F16: { return arm_compute::support::cpp14::make_unique>( params); } case DataType::F32: { return arm_compute::support::cpp14::make_unique>( params); } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** Generates appropriate accessor according to the specified graph parameters * * @param[in] graph_parameters Graph parameters * @param[in] lower Lower random values bound * @param[in] upper Upper random values bound * @param[in] seed Random generator seed * * @return An appropriate tensor accessor */ inline std::unique_ptr get_accessor(const TensorParams &tensor, PixelValue lower, PixelValue upper, const std::random_device::result_type seed = 0) { if(!tensor.npy.empty()) { return arm_compute::support::cpp14::make_unique(tensor.npy); } else { return arm_compute::support::cpp14::make_unique(lower, upper, seed); } } } // namespace class GraphConvolutionValidateExample final : public ValidateExample { public: GraphConvolutionValidateExample() : graph(0, "Convolution Graph example") { } bool do_setup(int argc, char **argv) override { CommandLineParser parser; ConvolutionOptions Options(parser); parser.parse(argc, argv); ExampleParams params = consume_covolution_graph_parameters(Options); if(params.common_params.help) { parser.print_help(argv[0]); return false; } std::cout << params << std::endl; // Calculate padding information const PadStrideInfo padding_info = calculate_convolution_padding(params); // Create input descriptor const TensorShape input_shape = permute_shape(TensorShape(params.input.width, params.input.height, params.input.fm, params.input.batch), DataLayout::NCHW, params.convolution.data_layout); TensorDescriptor input_descriptor = TensorDescriptor(input_shape, params.convolution.data_type, params.input.quant_info, params.convolution.data_layout); const PixelValue lower = PixelValue(params.input.range_low, params.convolution.data_type, params.input.quant_info); const PixelValue upper = PixelValue(params.input.range_high, params.convolution.data_type, params.input.quant_info); const PixelValue weights_lower = PixelValue(params.weights.range_low, params.convolution.data_type, params.weights.quant_info); const PixelValue weights_upper = PixelValue(params.weights.range_high, params.convolution.data_type, params.weights.quant_info); graph << params.common_params.target << params.convolution.convolution_method << InputLayer(input_descriptor, get_accessor(params.input, lower, upper, 0)) << ConvolutionLayer(params.weights.width, params.weights.height, params.weights.fm, get_accessor(params.weights, weights_lower, weights_upper, 1), get_accessor(params.bias, lower, upper, 2), padding_info, 1, params.weights.quant_info, params.output.quant_info) << OutputLayer(get_convolution_verify_accessor(params)); GraphConfig config; config.num_threads = params.common_params.threads; graph.finalize(params.common_params.target, config); return true; } void do_run() override { graph.run(); } void do_teardown() override { } private: Stream graph; }; /** Main program for Graph Convolution test * * @param[in] argc Number of arguments * @param[in] argv Arguments ( Input dimensions [width, height, channels, batch] * Weights dimensions [width, height, OFM] * Padding [top,bottom,left,right, Stride x, Stride y, mode [Valid / Same / Manual] ) * Convolution Method[ Auto/GEMM/Winograd/Direct] * Verification[tolerance_number,absolute_tolerance,relative_tolerance] ) * */ int main(int argc, char **argv) { return arm_compute::utils::run_example(argc, argv); }