/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_TEST_MODEL_OBJECTS_MOBILENET_H__ #define __ARM_COMPUTE_TEST_MODEL_OBJECTS_MOBILENET_H__ #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/Utils.h" #include "utils/Utils.h" #include using namespace arm_compute; using namespace arm_compute::test; namespace arm_compute { namespace test { namespace networks { /** MobileNet model object */ template class MobileNetNetwork { public: /** Initialize the network. * * @param[in] batches Number of batches. */ void init(int batches) { _batches = batches; // Initialize input, output input.allocator()->init(TensorInfo(TensorShape(224U, 224U, 3U, _batches), 1, DataType::F32)); output.allocator()->init(TensorInfo(TensorShape(11U, _batches), 1, DataType::F32)); // Initialize weights and biases w_conv3x3.allocator()->init(TensorInfo(TensorShape(3U, 3U, 3U, 16U), 1, DataType::F32)); b_conv3x3.allocator()->init(TensorInfo(TensorShape(16U), 1, DataType::F32)); depthwise_conv_block_init(0, 16, 16); depthwise_conv_block_init(1, 16, 32); depthwise_conv_block_init(2, 32, 32); depthwise_conv_block_init(3, 32, 64); depthwise_conv_block_init(4, 64, 64); depthwise_conv_block_init(5, 64, 128); depthwise_conv_block_init(6, 128, 128); depthwise_conv_block_init(7, 128, 128); depthwise_conv_block_init(8, 128, 128); depthwise_conv_block_init(9, 128, 128); depthwise_conv_block_init(10, 128, 128); depthwise_conv_block_init(11, 128, 256); depthwise_conv_block_init(12, 256, 256); w_conv[13].allocator()->init(TensorInfo(TensorShape(1U, 1U, 256U, 11U), 1, DataType::F32)); b_conv[13].allocator()->init(TensorInfo(TensorShape(11U), 1, DataType::F32)); } /** Build the model. */ void build() { // Configure Layers conv3x3.configure(&input, &w_conv3x3, &b_conv3x3, &conv_out[0], PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR)); conv3x3_act.configure(&conv_out[0], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)); depthwise_conv_block_build(0, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(1, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(2, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(3, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(4, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(5, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(6, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(7, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(8, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(9, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(10, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(11, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); depthwise_conv_block_build(12, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0)); pool.configure(&conv_out[13], &pool_out, PoolingLayerInfo(PoolingType::AVG, 7, PadStrideInfo(2, 2, 0, 0))); conv1x1[13].configure(&pool_out, &w_conv[13], &b_conv[13], &conv_out[14], PadStrideInfo(1, 1, 0, 0)); logistic.configure(&conv_out[14], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)); reshape.configure(&conv_out[14], &output); } /** Allocate the network. */ void allocate() { input.allocator()->allocate(); output.allocator()->allocate(); w_conv3x3.allocator()->allocate(); b_conv3x3.allocator()->allocate(); for(unsigned int i = 0; i < w_conv.size(); ++i) { w_conv[i].allocator()->allocate(); b_conv[i].allocator()->allocate(); } for(unsigned int i = 0; i < w_dwc.size(); ++i) { w_dwc[i].allocator()->allocate(); b_dwc[i].allocator()->allocate(); } for(auto &o : conv_out) { o.allocator()->allocate(); } for(auto &o : dwc_out) { o.allocator()->allocate(); } pool_out.allocator()->allocate(); } /** Fills the trainable parameters and input with random data. */ void fill_random() { unsigned int seed_idx = 0; std::uniform_real_distribution<> distribution(-1, 1); library->fill(Accessor(input), distribution, seed_idx++); library->fill(Accessor(w_conv3x3), distribution, seed_idx++); library->fill(Accessor(b_conv3x3), distribution, seed_idx++); for(unsigned int i = 0; i < w_conv.size(); ++i) { library->fill(Accessor(w_conv[i]), distribution, seed_idx++); library->fill(Accessor(b_conv[i]), distribution, seed_idx++); } for(unsigned int i = 0; i < w_dwc.size(); ++i) { library->fill(Accessor(w_dwc[i]), distribution, seed_idx++); library->fill(Accessor(b_dwc[i]), distribution, seed_idx++); } } /** Feed input to network from file. * * @param name File name of containing the input data. */ void feed(std::string name) { library->fill_layer_data(Accessor(input), name); } /** Get the classification results. * * @return Vector containing the classified labels */ std::vector get_classifications() { std::vector classified_labels; Accessor output_accessor(output); Window window; window.set(Window::DimX, Window::Dimension(0, 1, 1)); for(unsigned int d = 1; d < output_accessor.shape().num_dimensions(); ++d) { window.set(d, Window::Dimension(0, output_accessor.shape()[d], 1)); } execute_window_loop(window, [&](const Coordinates & id) { int max_idx = 0; float val = 0; const void *const out_ptr = output_accessor(id); for(unsigned int l = 0; l < output_accessor.shape().x(); ++l) { float curr_val = reinterpret_cast(out_ptr)[l]; if(curr_val > val) { max_idx = l; val = curr_val; } } classified_labels.push_back(max_idx); }); return classified_labels; } /** Clear all allocated memory from the tensor objects */ void clear() { input.allocator()->free(); output.allocator()->free(); w_conv3x3.allocator()->free(); b_conv3x3.allocator()->free(); for(unsigned int i = 0; i < w_conv.size(); ++i) { w_conv[i].allocator()->free(); b_conv[i].allocator()->free(); } for(unsigned int i = 0; i < w_dwc.size(); ++i) { w_dwc[i].allocator()->free(); b_dwc[i].allocator()->free(); } for(auto &o : conv_out) { o.allocator()->free(); } for(auto &o : dwc_out) { o.allocator()->free(); } pool_out.allocator()->free(); } /** Runs the model */ void run() { conv3x3.run(); conv3x3_act.run(); depthwise_conv_block_run(0); depthwise_conv_block_run(1); depthwise_conv_block_run(2); depthwise_conv_block_run(3); depthwise_conv_block_run(4); depthwise_conv_block_run(5); depthwise_conv_block_run(6); depthwise_conv_block_run(7); depthwise_conv_block_run(8); depthwise_conv_block_run(9); depthwise_conv_block_run(10); depthwise_conv_block_run(11); depthwise_conv_block_run(12); pool.run(); conv1x1[13].run(); logistic.run(); reshape.run(); } /** Sync the results */ void sync() { sync_if_necessary(); sync_tensor_if_necessary(output); } private: void depthwise_conv_block_init(unsigned int idx, unsigned int ifm, unsigned int ofm) { w_dwc[idx].allocator()->init(TensorInfo(TensorShape(3U, 3U, ifm), 1, DataType::F32)); b_dwc[idx].allocator()->init(TensorInfo(TensorShape(ifm), 1, DataType::F32)); w_conv[idx].allocator()->init(TensorInfo(TensorShape(1U, 1U, ifm, ofm), 1, DataType::F32)); b_conv[idx].allocator()->init(TensorInfo(TensorShape(ofm), 1, DataType::F32)); } void depthwise_conv_block_build(unsigned int idx, PadStrideInfo dwc_ps, PadStrideInfo conv_ps) { dwc3x3[idx].configure(&conv_out[idx], &w_dwc[idx], &b_dwc[idx], &dwc_out[idx], dwc_ps); act[2 * idx].configure(&dwc_out[idx], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)); conv1x1[idx].configure(&dwc_out[idx], &w_conv[idx], &b_conv[idx], &conv_out[idx + 1], conv_ps); act[2 * idx + 1].configure(&conv_out[idx], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)); } void depthwise_conv_block_run(unsigned int idx) { dwc3x3[idx].run(); act[2 * idx].run(); conv1x1[idx].run(); act[2 * idx + 1].run(); } private: unsigned int _batches{ 0 }; ConvolutionLayerFunction conv3x3{}; ActivationLayerFunction conv3x3_act{}; std::array act{ {} }; std::array conv1x1{ {} }; std::array dwc3x3{ {} }; PoolingLayerFunction pool{}; ActivationLayerFunction logistic{}; ReshapeFunction reshape{}; TensorType w_conv3x3{}, b_conv3x3{}; std::array w_conv{ {} }, b_conv{ {} }; std::array w_dwc{ {} }, b_dwc{ {} }; TensorType input{}, output{}; std::array conv_out{ {} }; std::array dwc_out{ {} }; TensorType pool_out{}; }; } // namespace networks } // namespace test } // namespace arm_compute #endif //__ARM_COMPUTE_TEST_MODEL_OBJECTS_MOBILENET_H__