/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_TEST_UTILS_H__ #define __ARM_COMPUTE_TEST_UTILS_H__ #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/HOGInfo.h" #include "arm_compute/core/PyramidInfo.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "support/ToolchainSupport.h" #ifdef ARM_COMPUTE_CL #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/runtime/CL/CLScheduler.h" #endif /* ARM_COMPUTE_CL */ #ifdef ARM_COMPUTE_GC #include "arm_compute/core/GLES_COMPUTE/OpenGLES.h" #include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h" #endif /* ARM_COMPUTE_GC */ #include #include #include #include #include #include #include #include #include namespace arm_compute { #ifdef ARM_COMPUTE_CL class CLTensor; #endif /* ARM_COMPUTE_CL */ namespace test { /** Round floating-point value with half value rounding to positive infinity. * * @param[in] value floating-point value to be rounded. * * @return Floating-point value of rounded @p value. */ template ::value>::type> inline T round_half_up(T value) { return std::floor(value + 0.5f); } /** Round floating-point value with half value rounding to nearest even. * * @param[in] value floating-point value to be rounded. * @param[in] epsilon precision. * * @return Floating-point value of rounded @p value. */ template ::value>::type> inline T round_half_even(T value, T epsilon = std::numeric_limits::epsilon()) { T positive_value = std::abs(value); T ipart = 0; std::modf(positive_value, &ipart); // If 'value' is exactly halfway between two integers if(std::abs(positive_value - (ipart + 0.5f)) < epsilon) { // If 'ipart' is even then return 'ipart' if(std::fmod(ipart, 2.f) < epsilon) { return support::cpp11::copysign(ipart, value); } // Else return the nearest even integer return support::cpp11::copysign(std::ceil(ipart + 0.5f), value); } // Otherwise use the usual round to closest return support::cpp11::copysign(support::cpp11::round(positive_value), value); } namespace traits { // *INDENT-OFF* // clang-format off /** Promote a type */ template struct promote { }; /** Promote uint8_t to uint16_t */ template <> struct promote { using type = uint16_t; /**< Promoted type */ }; /** Promote int8_t to int16_t */ template <> struct promote { using type = int16_t; /**< Promoted type */ }; /** Promote uint16_t to uint32_t */ template <> struct promote { using type = uint32_t; /**< Promoted type */ }; /** Promote int16_t to int32_t */ template <> struct promote { using type = int32_t; /**< Promoted type */ }; /** Promote uint32_t to uint64_t */ template <> struct promote { using type = uint64_t; /**< Promoted type */ }; /** Promote int32_t to int64_t */ template <> struct promote { using type = int64_t; /**< Promoted type */ }; /** Promote float to float */ template <> struct promote { using type = float; /**< Promoted type */ }; /** Promote half to half */ template <> struct promote { using type = half; /**< Promoted type */ }; /** Get promoted type */ template using promote_t = typename promote::type; template using make_signed_conditional_t = typename std::conditional::value, std::make_signed, std::common_type>::type; template using make_unsigned_conditional_t = typename std::conditional::value, std::make_unsigned, std::common_type>::type; // clang-format on // *INDENT-ON* } /** Look up the format corresponding to a channel. * * @param[in] channel Channel type. * * @return Format that contains the given channel. */ inline Format get_format_for_channel(Channel channel) { switch(channel) { case Channel::R: case Channel::G: case Channel::B: return Format::RGB888; default: throw std::runtime_error("Unsupported channel"); } } /** Return the format of a channel. * * @param[in] channel Channel type. * * @return Format of the given channel. */ inline Format get_channel_format(Channel channel) { switch(channel) { case Channel::R: case Channel::G: case Channel::B: return Format::U8; default: throw std::runtime_error("Unsupported channel"); } } /** Base case of foldl. * * @return value. */ template inline T foldl(F &&, const T &value) { return value; } /** Base case of foldl. * * @return func(value1, value2). */ template inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2)) { return func(value1, value2); } /** Fold left. * * @param[in] func Binary function to be called. * @param[in] initial Initial value. * @param[in] value Argument passed to the function. * @param[in] values Remaining arguments. */ template inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values) { return foldl(std::forward(func), func(std::forward(initial), std::forward(value)), std::forward(values)...); } /** Create a valid region based on tensor shape, border mode and border size * * @param[in] a_shape Shape used as size of the valid region. * @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined. * @param[in] border_size (Optional) Border size used to specify the region to exclude. * * @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise * return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape. */ inline ValidRegion shape_to_valid_region(const TensorShape &a_shape, bool border_undefined = false, BorderSize border_size = BorderSize(0)) { ValidRegion valid_region{ Coordinates(), a_shape }; Coordinates &anchor = valid_region.anchor; TensorShape &shape = valid_region.shape; if(border_undefined) { ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2); anchor.set(0, border_size.left); anchor.set(1, border_size.top); const int valid_shape_x = std::max(0, static_cast(shape.x()) - static_cast(border_size.left) - static_cast(border_size.right)); const int valid_shape_y = std::max(0, static_cast(shape.y()) - static_cast(border_size.top) - static_cast(border_size.bottom)); shape.set(0, valid_shape_x); shape.set(1, valid_shape_y); } return valid_region; } /** Create a valid region for Gaussian Pyramid Half based on tensor shape and valid region at level "i - 1" and border mode * * @note The border size is 2 in case of Gaussian Pyramid Half * * @param[in] a_shape Shape used at level "i - 1" of Gaussian Pyramid Half * @param[in] a_valid_region Valid region used at level "i - 1" of Gaussian Pyramid Half * @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined. * * return The valid region for the level "i" of Gaussian Pyramid Half */ inline ValidRegion shape_to_valid_region_gaussian_pyramid_half(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false) { constexpr int border_size = 2; ValidRegion valid_region{ Coordinates(), a_shape }; Coordinates &anchor = valid_region.anchor; TensorShape &shape = valid_region.shape; // Compute tensor shape for level "i" of Gaussian Pyramid Half // dst_width = (src_width + 1) * 0.5f // dst_height = (src_height + 1) * 0.5f shape.set(0, (a_shape[0] + 1) * 0.5f); shape.set(1, (a_shape[1] + 1) * 0.5f); if(border_undefined) { ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2); // Compute the left and top invalid borders float invalid_border_left = static_cast(a_valid_region.anchor.x() + border_size) / 2.0f; float invalid_border_top = static_cast(a_valid_region.anchor.y() + border_size) / 2.0f; // For the new anchor point we can have 2 cases: // 1) If the width/height of the tensor shape is odd, we have to take the ceil value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size / 2.0f // 2) If the width/height of the tensor shape is even, we have to take the floor value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size) / 2.0f // In this manner we should be able to propagate correctly the valid region along all levels of the pyramid invalid_border_left = (a_shape[0] % 2) ? std::ceil(invalid_border_left) : std::floor(invalid_border_left); invalid_border_top = (a_shape[1] % 2) ? std::ceil(invalid_border_top) : std::floor(invalid_border_top); // Set the anchor point anchor.set(0, static_cast(invalid_border_left)); anchor.set(1, static_cast(invalid_border_top)); // Compute shape // Calculate the right and bottom invalid borders at the previous level of the pyramid const float prev_invalid_border_right = static_cast(a_shape[0] - (a_valid_region.anchor.x() + a_valid_region.shape[0])); const float prev_invalid_border_bottom = static_cast(a_shape[1] - (a_valid_region.anchor.y() + a_valid_region.shape[1])); // Calculate the right and bottom invalid borders at the current level of the pyramid const float invalid_border_right = std::ceil((prev_invalid_border_right + static_cast(border_size)) / 2.0f); const float invalid_border_bottom = std::ceil((prev_invalid_border_bottom + static_cast(border_size)) / 2.0f); const int valid_shape_x = std::max(0, static_cast(shape.x()) - static_cast(invalid_border_left) - static_cast(invalid_border_right)); const int valid_shape_y = std::max(0, static_cast(shape.y()) - static_cast(invalid_border_top) - static_cast(invalid_border_bottom)); shape.set(0, valid_shape_x); shape.set(1, valid_shape_y); } return valid_region; } /** Create a valid region for Laplacian Pyramid based on tensor shape and valid region at level "i - 1" and border mode * * @note The border size is 2 in case of Laplacian Pyramid * * @param[in] a_shape Shape used at level "i - 1" of Laplacian Pyramid * @param[in] a_valid_region Valid region used at level "i - 1" of Laplacian Pyramid * @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined. * * return The valid region for the level "i" of Laplacian Pyramid */ inline ValidRegion shape_to_valid_region_laplacian_pyramid(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false) { ValidRegion valid_region = shape_to_valid_region_gaussian_pyramid_half(a_shape, a_valid_region, border_undefined); if(border_undefined) { const BorderSize gaussian5x5_border(2); auto border_left = static_cast(gaussian5x5_border.left); auto border_right = static_cast(gaussian5x5_border.right); auto border_top = static_cast(gaussian5x5_border.top); auto border_bottom = static_cast(gaussian5x5_border.bottom); valid_region.anchor.set(0, valid_region.anchor[0] + border_left); valid_region.anchor.set(1, valid_region.anchor[1] + border_top); valid_region.shape.set(0, std::max(0, static_cast(valid_region.shape[0]) - border_right - border_left)); valid_region.shape.set(1, std::max(0, static_cast(valid_region.shape[1]) - border_top - border_bottom)); } return valid_region; } /** Write the value after casting the pointer according to @p data_type. * * @warning The type of the value must match the specified data type. * * @param[out] ptr Pointer to memory where the @p value will be written. * @param[in] value Value that will be written. * @param[in] data_type Data type that will be written. */ template void store_value_with_data_type(void *ptr, T value, DataType data_type) { switch(data_type) { case DataType::U8: case DataType::QASYMM8: *reinterpret_cast(ptr) = value; break; case DataType::S8: case DataType::QSYMM8: case DataType::QSYMM8_PER_CHANNEL: *reinterpret_cast(ptr) = value; break; case DataType::U16: *reinterpret_cast(ptr) = value; break; case DataType::S16: case DataType::QSYMM16: *reinterpret_cast(ptr) = value; break; case DataType::U32: *reinterpret_cast(ptr) = value; break; case DataType::S32: *reinterpret_cast(ptr) = value; break; case DataType::U64: *reinterpret_cast(ptr) = value; break; case DataType::S64: *reinterpret_cast(ptr) = value; break; case DataType::F16: *reinterpret_cast(ptr) = value; break; case DataType::F32: *reinterpret_cast(ptr) = value; break; case DataType::F64: *reinterpret_cast(ptr) = value; break; case DataType::SIZET: *reinterpret_cast(ptr) = value; break; default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** Saturate a value of type T against the numeric limits of type U. * * @param[in] val Value to be saturated. * * @return saturated value. */ template T saturate_cast(T val) { if(val > static_cast(std::numeric_limits::max())) { val = static_cast(std::numeric_limits::max()); } if(val < static_cast(std::numeric_limits::lowest())) { val = static_cast(std::numeric_limits::lowest()); } return val; } /** Find the signed promoted common type. */ template struct common_promoted_signed_type { /** Common type */ using common_type = typename std::common_type::type; /** Promoted type */ using promoted_type = traits::promote_t; /** Intermediate type */ using intermediate_type = typename traits::make_signed_conditional_t::type; }; /** Find the unsigned promoted common type. */ template struct common_promoted_unsigned_type { /** Common type */ using common_type = typename std::common_type::type; /** Promoted type */ using promoted_type = traits::promote_t; /** Intermediate type */ using intermediate_type = typename traits::make_unsigned_conditional_t::type; }; /** Convert a linear index into n-dimensional coordinates. * * @param[in] shape Shape of the n-dimensional tensor. * @param[in] index Linear index specifying the i-th element. * * @return n-dimensional coordinates. */ inline Coordinates index2coord(const TensorShape &shape, int index) { int num_elements = shape.total_size(); ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]"); ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape"); Coordinates coord{ 0 }; for(int d = shape.num_dimensions() - 1; d >= 0; --d) { num_elements /= shape[d]; coord.set(d, index / num_elements); index %= num_elements; } return coord; } /** Linearise the given coordinate. * * Transforms the given coordinate into a linear offset in terms of * elements. * * @param[in] shape Shape of the n-dimensional tensor. * @param[in] coord The to be converted coordinate. * * @return Linear offset to the element. */ inline int coord2index(const TensorShape &shape, const Coordinates &coord) { ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape"); ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate"); int index = 0; int dim_size = 1; for(unsigned int i = 0; i < coord.num_dimensions(); ++i) { index += coord[i] * dim_size; dim_size *= shape[i]; } return index; } /** Check if a coordinate is within a valid region */ inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord) { for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d) { if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d)) { return false; } } return true; } /** Create and initialize a tensor of the given type. * * @param[in] shape Tensor shape. * @param[in] data_type Data type. * @param[in] num_channels (Optional) Number of channels. * @param[in] quantization_info (Optional) Quantization info for asymmetric quantized types. * @param[in] data_layout (Optional) Data layout. Default is NCHW. * * @return Initialized tensor of given type. */ template inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1, QuantizationInfo quantization_info = QuantizationInfo(), DataLayout data_layout = DataLayout::NCHW) { T tensor; TensorInfo info(shape, num_channels, data_type); info.set_quantization_info(quantization_info); info.set_data_layout(data_layout); tensor.allocator()->init(info); return tensor; } /** Create and initialize a tensor of the given type. * * @param[in] shape Tensor shape. * @param[in] format Format type. * * @return Initialized tensor of given type. */ template inline T create_tensor(const TensorShape &shape, Format format) { TensorInfo info(shape, format); T tensor; tensor.allocator()->init(info); return tensor; } /** Create and initialize a multi-image of the given type. * * @param[in] shape Tensor shape. * @param[in] format Format type. * * @return Initialized tensor of given type. */ template inline T create_multi_image(const TensorShape &shape, Format format) { T multi_image; multi_image.init(shape.x(), shape.y(), format); return multi_image; } /** Create and initialize a HOG (Histogram of Oriented Gradients) of the given type. * * @param[in] hog_info HOGInfo object * * @return Initialized HOG of given type. */ template inline T create_HOG(const HOGInfo &hog_info) { T hog; hog.init(hog_info); return hog; } /** Create and initialize a Pyramid of the given type. * * @param[in] pyramid_info The PyramidInfo object. * * @return Initialized Pyramid of given type. */ template inline T create_pyramid(const PyramidInfo &pyramid_info) { T pyramid; pyramid.init_auto_padding(pyramid_info); return pyramid; } /** Initialize a convolution matrix. * * @param[in, out] conv The input convolution matrix. * @param[in] width The width of the convolution matrix. * @param[in] height The height of the convolution matrix. * @param[in] seed The random seed to be used. */ inline void init_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed) { std::mt19937 gen(seed); std::uniform_int_distribution distribution_int16(-32768, 32767); for(unsigned int i = 0; i < width * height; ++i) { conv[i] = distribution_int16(gen); } } /** Initialize a separable convolution matrix. * * @param[in, out] conv The input convolution matrix. * @param[in] width The width of the convolution matrix. * @param[in] height The height of the convolution matrix. * @param[in] seed The random seed to be used. */ inline void init_separable_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed) { std::mt19937 gen(seed); // Set it between -128 and 127 to ensure the matrix does not overflow std::uniform_int_distribution distribution_int16(-128, 127); int16_t conv_row[width]; int16_t conv_col[height]; conv_row[0] = conv_col[0] = 1; for(unsigned int i = 1; i < width; ++i) { conv_row[i] = distribution_int16(gen); } for(unsigned int i = 1; i < height; ++i) { conv_col[i] = distribution_int16(gen); } // Multiply two matrices for(unsigned int i = 0; i < width; ++i) { for(unsigned int j = 0; j < height; ++j) { conv[i * width + j] = conv_col[i] * conv_row[j]; } } } /** Create a vector with a uniform distribution of floating point values across the specified range. * * @param[in] num_values The number of values to be created. * @param[in] min The minimum value in distribution (inclusive). * @param[in] max The maximum value in distribution (inclusive). * @param[in] seed The random seed to be used. * * @return A vector that contains the requested number of random floating point values */ template ::value>::type> inline std::vector generate_random_real(unsigned int num_values, T min, T max, std::random_device::result_type seed) { std::vector v(num_values); std::mt19937 gen(seed); std::uniform_real_distribution dist(min, max); for(unsigned int i = 0; i < num_values; ++i) { v.at(i) = dist(gen); } return v; } /** Create a vector of random keypoints for pyramid representation. * * @param[in] shape The shape of the input tensor. * @param[in] num_keypoints The number of keypoints to be created. * @param[in] seed The random seed to be used. * @param[in] num_levels The number of pyramid levels. * * @return A vector that contains the requested number of random keypoints */ inline std::vector generate_random_keypoints(const TensorShape &shape, size_t num_keypoints, std::random_device::result_type seed, size_t num_levels = 1) { std::vector keypoints; std::mt19937 gen(seed); // Calculate distribution bounds const auto min = static_cast(std::pow(2, num_levels)); const auto max_width = static_cast(shape.x()); const auto max_height = static_cast(shape.y()); ARM_COMPUTE_ERROR_ON(min > max_width || min > max_height); // Create distributions std::uniform_int_distribution<> dist_w(min, max_width); std::uniform_int_distribution<> dist_h(min, max_height); for(unsigned int i = 0; i < num_keypoints; i++) { KeyPoint keypoint; keypoint.x = dist_w(gen); keypoint.y = dist_h(gen); keypoint.tracking_status = 1; keypoints.push_back(keypoint); } return keypoints; } template inline void fill_array(ArrayAccessor_T &&array, const std::vector &v) { array.resize(v.size()); std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T)); } /** Obtain numpy type string from DataType. * * @param[in] data_type Data type. * * @return numpy type string. */ inline std::string get_typestring(DataType data_type) { // Check endianness const unsigned int i = 1; const char *c = reinterpret_cast(&i); std::string endianness; if(*c == 1) { endianness = std::string("<"); } else { endianness = std::string(">"); } const std::string no_endianness("|"); switch(data_type) { case DataType::U8: return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t)); case DataType::S8: return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t)); case DataType::U16: return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t)); case DataType::S16: return endianness + "i" + support::cpp11::to_string(sizeof(int16_t)); case DataType::U32: return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t)); case DataType::S32: return endianness + "i" + support::cpp11::to_string(sizeof(int32_t)); case DataType::U64: return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t)); case DataType::S64: return endianness + "i" + support::cpp11::to_string(sizeof(int64_t)); case DataType::F32: return endianness + "f" + support::cpp11::to_string(sizeof(float)); case DataType::F64: return endianness + "f" + support::cpp11::to_string(sizeof(double)); case DataType::SIZET: return endianness + "u" + support::cpp11::to_string(sizeof(size_t)); default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } /** Sync if necessary. */ template inline void sync_if_necessary() { #ifdef ARM_COMPUTE_CL if(opencl_is_available() && std::is_same::type, arm_compute::CLTensor>::value) { CLScheduler::get().sync(); } #endif /* ARM_COMPUTE_CL */ } /** Sync tensor if necessary. * * @note: If the destination tensor not being used on OpenGL ES, GPU will optimize out the operation. * * @param[in] tensor Tensor to be sync. */ template inline void sync_tensor_if_necessary(TensorType &tensor) { #ifdef ARM_COMPUTE_GC if(opengles31_is_available() && std::is_same::type, arm_compute::GCTensor>::value) { // Force sync the tensor by calling map and unmap. IGCTensor &t = dynamic_cast(tensor); t.map(); t.unmap(); } #endif /* ARM_COMPUTE_GC */ } } // namespace test } // namespace arm_compute #endif /* __ARM_COMPUTE_TEST_UTILS_H__ */