/* * Copyright (c) 2017-2020, 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_TEST_SIMPLE_TENSOR_H #define ARM_COMPUTE_TEST_SIMPLE_TENSOR_H #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "tests/IAccessor.h" #include "tests/Utils.h" #include #include #include #include #include #include #include #include namespace arm_compute { namespace test { class RawTensor; /** Simple tensor object that stores elements in a consecutive chunk of memory. * * It can be created by either loading an image from a file which also * initialises the content of the tensor or by explcitly specifying the size. * The latter leaves the content uninitialised. * * Furthermore, the class provides methods to convert the tensor's values into * different image format. */ template class SimpleTensor : public IAccessor { public: /** Create an uninitialised tensor. */ SimpleTensor() = default; /** Create an uninitialised tensor of the given @p shape and @p format. * * @param[in] shape Shape of the new raw tensor. * @param[in] format Format of the new raw tensor. */ SimpleTensor(TensorShape shape, Format format); /** Create an uninitialised tensor of the given @p shape and @p data type. * * @param[in] shape Shape of the new raw tensor. * @param[in] data_type Data type of the new raw tensor. * @param[in] num_channels (Optional) Number of channels (default = 1). * @param[in] quantization_info (Optional) Quantization info for asymmetric quantization (default = empty). * @param[in] data_layout (Optional) Data layout of the tensor (default = NCHW). */ SimpleTensor(TensorShape shape, DataType data_type, int num_channels = 1, QuantizationInfo quantization_info = QuantizationInfo(), DataLayout data_layout = DataLayout::NCHW); /** Create a deep copy of the given @p tensor. * * @param[in] tensor To be copied tensor. */ SimpleTensor(const SimpleTensor &tensor); /** Create a deep copy of the given @p tensor. * * @param[in] tensor To be copied tensor. * * @return a copy of the given tensor. */ SimpleTensor &operator=(SimpleTensor tensor); /** Allow instances of this class to be move constructed */ SimpleTensor(SimpleTensor &&) = default; /** Default destructor. */ ~SimpleTensor() = default; /** Tensor value type */ using value_type = T; /** Tensor buffer pointer type */ using Buffer = std::unique_ptr; friend class RawTensor; /** Return value at @p offset in the buffer. * * @param[in] offset Offset within the buffer. * * @return value in the buffer. */ T &operator[](size_t offset); /** Return constant value at @p offset in the buffer. * * @param[in] offset Offset within the buffer. * * @return constant value in the buffer. */ const T &operator[](size_t offset) const; /** Shape of the tensor. * * @return the shape of the tensor. */ TensorShape shape() const override; /** Size of each element in the tensor in bytes. * * @return the size of each element in the tensor in bytes. */ size_t element_size() const override; /** Total size of the tensor in bytes. * * @return the total size of the tensor in bytes. */ size_t size() const override; /** Image format of the tensor. * * @return the format of the tensor. */ Format format() const override; /** Data layout of the tensor. * * @return the data layout of the tensor. */ DataLayout data_layout() const override; /** Data type of the tensor. * * @return the data type of the tensor. */ DataType data_type() const override; /** Number of channels of the tensor. * * @return the number of channels of the tensor. */ int num_channels() const override; /** Number of elements of the tensor. * * @return the number of elements of the tensor. */ int num_elements() const override; /** Available padding around the tensor. * * @return the available padding around the tensor. */ PaddingSize padding() const override; /** Quantization info in case of asymmetric quantized type * * @return */ QuantizationInfo quantization_info() const override; /** Set the quantization information of the tensor. * * This function does not have any effect on the raw quantized data of the tensor. * It simply changes the quantization information, hence changes the dequantized values. * * @return A reference to the current object. */ SimpleTensor &quantization_info(const QuantizationInfo &qinfo); /** Constant pointer to the underlying buffer. * * @return a constant pointer to the data. */ const T *data() const; /** Pointer to the underlying buffer. * * @return a pointer to the data. */ T *data(); /** Read only access to the specified element. * * @param[in] coord Coordinates of the desired element. * * @return A pointer to the desired element. */ const void *operator()(const Coordinates &coord) const override; /** Access to the specified element. * * @param[in] coord Coordinates of the desired element. * * @return A pointer to the desired element. */ void *operator()(const Coordinates &coord) override; /** Swaps the content of the provided tensors. * * @param[in, out] tensor1 Tensor to be swapped. * @param[in, out] tensor2 Tensor to be swapped. */ template friend void swap(SimpleTensor &tensor1, SimpleTensor &tensor2); protected: Buffer _buffer{ nullptr }; TensorShape _shape{}; Format _format{ Format::UNKNOWN }; DataType _data_type{ DataType::UNKNOWN }; int _num_channels{ 0 }; QuantizationInfo _quantization_info{}; DataLayout _data_layout{ DataLayout::UNKNOWN }; }; template SimpleTensor copy_tensor(const SimpleTensor &tensor) { SimpleTensor st(tensor.shape(), tensor.data_type(), tensor.num_channels(), tensor.quantization_info(), tensor.data_layout()); for(size_t n = 0; n < size_t(st.num_elements()); n++) { st.data()[n] = static_cast(tensor.data()[n]); } return st; } template ::value, int>::type = 0> SimpleTensor copy_tensor(const SimpleTensor &tensor) { SimpleTensor st(tensor.shape(), tensor.data_type(), tensor.num_channels(), tensor.quantization_info(), tensor.data_layout()); memcpy((void *)st.data(), (const void *)tensor.data(), size_t(st.num_elements() * sizeof(T1))); return st; } template < typename T1, typename T2, typename std::enable_if < (std::is_same::value || std::is_same::value), int >::type = 0 > SimpleTensor copy_tensor(const SimpleTensor &tensor) { SimpleTensor st(tensor.shape(), tensor.data_type(), tensor.num_channels(), tensor.quantization_info(), tensor.data_layout()); for(size_t n = 0; n < size_t(st.num_elements()); n++) { st.data()[n] = half_float::detail::half_cast(tensor.data()[n]); } return st; } template SimpleTensor::SimpleTensor(TensorShape shape, Format format) : _buffer(nullptr), _shape(shape), _format(format), _quantization_info(), _data_layout(DataLayout::NCHW) { _num_channels = num_channels(); _buffer = std::make_unique(num_elements() * _num_channels); } template SimpleTensor::SimpleTensor(TensorShape shape, DataType data_type, int num_channels, QuantizationInfo quantization_info, DataLayout data_layout) : _buffer(nullptr), _shape(shape), _data_type(data_type), _num_channels(num_channels), _quantization_info(quantization_info), _data_layout(data_layout) { _buffer = std::make_unique(this->_shape.total_size() * _num_channels); } template SimpleTensor::SimpleTensor(const SimpleTensor &tensor) : _buffer(nullptr), _shape(tensor.shape()), _format(tensor.format()), _data_type(tensor.data_type()), _num_channels(tensor.num_channels()), _quantization_info(tensor.quantization_info()), _data_layout(tensor.data_layout()) { _buffer = std::make_unique(tensor.num_elements() * _num_channels); std::copy_n(tensor.data(), this->_shape.total_size() * _num_channels, _buffer.get()); } template SimpleTensor &SimpleTensor::operator=(SimpleTensor tensor) { swap(*this, tensor); return *this; } template T &SimpleTensor::operator[](size_t offset) { return _buffer[offset]; } template const T &SimpleTensor::operator[](size_t offset) const { return _buffer[offset]; } template TensorShape SimpleTensor::shape() const { return _shape; } template size_t SimpleTensor::element_size() const { return num_channels() * element_size_from_data_type(data_type()); } template QuantizationInfo SimpleTensor::quantization_info() const { return _quantization_info; } template SimpleTensor &SimpleTensor::quantization_info(const QuantizationInfo &qinfo) { _quantization_info = qinfo; return *this; } template size_t SimpleTensor::size() const { const size_t size = std::accumulate(_shape.cbegin(), _shape.cend(), 1, std::multiplies()); return size * element_size(); } template Format SimpleTensor::format() const { return _format; } template DataLayout SimpleTensor::data_layout() const { return _data_layout; } template DataType SimpleTensor::data_type() const { if(_format != Format::UNKNOWN) { return data_type_from_format(_format); } else { return _data_type; } } template int SimpleTensor::num_channels() const { switch(_format) { case Format::U8: case Format::U16: case Format::S16: case Format::U32: case Format::S32: case Format::U64: case Format::S64: case Format::F16: case Format::F32: return 1; // Because the U and V channels are subsampled // these formats appear like having only 2 channels: case Format::YUYV422: case Format::UYVY422: return 2; case Format::UV88: return 2; case Format::RGB888: return 3; case Format::RGBA8888: return 4; case Format::UNKNOWN: return _num_channels; //Doesn't make sense for planar formats: case Format::NV12: case Format::NV21: case Format::IYUV: case Format::YUV444: default: return 0; } } template int SimpleTensor::num_elements() const { return _shape.total_size(); } template PaddingSize SimpleTensor::padding() const { return PaddingSize(0); } template const T *SimpleTensor::data() const { return _buffer.get(); } template T *SimpleTensor::data() { return _buffer.get(); } template const void *SimpleTensor::operator()(const Coordinates &coord) const { return _buffer.get() + coord2index(_shape, coord) * _num_channels; } template void *SimpleTensor::operator()(const Coordinates &coord) { return _buffer.get() + coord2index(_shape, coord) * _num_channels; } template void swap(SimpleTensor &tensor1, SimpleTensor &tensor2) { // Use unqualified call to swap to enable ADL. But make std::swap available // as backup. using std::swap; swap(tensor1._shape, tensor2._shape); swap(tensor1._format, tensor2._format); swap(tensor1._data_type, tensor2._data_type); swap(tensor1._num_channels, tensor2._num_channels); swap(tensor1._quantization_info, tensor2._quantization_info); swap(tensor1._buffer, tensor2._buffer); } } // namespace test } // namespace arm_compute #endif /* ARM_COMPUTE_TEST_SIMPLE_TENSOR_H */