/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/runtime/heuristics/indirect_conv/ClIndirectConvDefaultConfigValhall.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/GPUTarget.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" namespace arm_compute { namespace cl_indirect_conv { using namespace arm_compute::misc::shape_calculator; ClIndirectConvDefaultConfigValhall::ClIndirectConvDefaultConfigValhall(GPUTarget gpu) : IClIndirectConvKernelConfig(gpu) { } DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure(const ITensorInfo *src, const ITensorInfo *wei, const PadStrideInfo &conv_info) { using ConfigurationFunctionExecutorPtr = DirectConvComputeKernelInfo (ClIndirectConvDefaultConfigValhall::*)( const ITensorInfo *src, const ITensorInfo *wei, const PadStrideInfo &conv_info); ClIndirectConvConfigArray configs_G77( &ClIndirectConvDefaultConfigValhall::configure_G77_f32, &ClIndirectConvDefaultConfigValhall::configure_G77_f16); // Important note: Indirect convolution should not be used when the kernel size is 1x1 (pointwise). The reason is because the indirect buffer makes // indirect convolution less efficient than direct convolution or gemm. For this reason, the heuristic of indirect convolution has not been tuned // for the pointwise convolution cases. ConfigurationFunctionExecutorPtr func = configs_G77.get_function(src->data_type()); ARM_COMPUTE_ERROR_ON_MSG(func == nullptr, "Data type not supported for indirect convolution"); return (this->*func)(src, wei, conv_info); } DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure_G77_f32(const ITensorInfo *src, const ITensorInfo *wei, const PadStrideInfo &conv_info) { DirectConvComputeKernelInfo desc; if (src->data_layout() == DataLayout::NHWC) { const TensorShape dst_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *wei, conv_info); const bool export_weights_to_cl_image = export_to_cl_image(wei); const int32_t stride_x = conv_info.stride().first; const int32_t stride_y = conv_info.stride().second; const int32_t ofm = dst_shape[0]; const int32_t m = (dst_shape[1] / stride_x) * (dst_shape[2] / stride_y); desc.export_weights_to_cl_image = export_weights_to_cl_image; if (ofm <= 4) { desc.m0 = 1; desc.n0 = 2; desc.k0 = 16; } else { // The 16000 threshold value has been identified as the right // one for using the biggest block size allowed on F32: 5x4x4 if (m < 16000) { desc.m0 = 4; desc.n0 = 4; desc.k0 = 4; } else { desc.m0 = 5; desc.n0 = 4; desc.k0 = 4; } } } return desc; } DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure_G77_f16(const ITensorInfo *src, const ITensorInfo *wei, const PadStrideInfo &conv_info) { DirectConvComputeKernelInfo desc; if (src->data_layout() == DataLayout::NHWC) { const TensorShape wei_shape = wei->tensor_shape(); const TensorShape dst_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *wei, conv_info); const bool export_weights_to_cl_image = export_to_cl_image(wei); const int32_t ofm = dst_shape[0]; const int32_t m = dst_shape[1] * dst_shape[2]; const int32_t k = wei_shape[0]; desc.export_weights_to_cl_image = export_weights_to_cl_image; if (ofm <= 4) { // k0 should be as larger as possible. However, we should avoid // having left-over for loops that make the implementation slower. if ((k % 16) == 0) { desc.k0 = 16; } else if ((k % 8) == 0) { desc.k0 = 8; } else { desc.k0 = 4; } desc.m0 = 1; desc.n0 = ofm; } else { // The 16000 threshold value has been identified as the right // one for using the biggest block size allowed on F16: 8x4 if (m >= 16000 && k < 4) { desc.m0 = 8; desc.n0 = 4; desc.k0 = 4; // k0 is clamped to k inside the kernel when k is less than 4 } else { desc.m0 = 5; desc.n0 = 4; desc.k0 = 8; } } } return desc; } } // namespace cl_indirect_conv } // namespace arm_compute