/* * Copyright (c) 2018-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/runtime/gpu/cl/operators/ClWinogradConv2d.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/experimental/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "src/core/CL/kernels/CLFillBorderKernel.h" #include "src/core/CL/kernels/CLFillBorderKernel.h" #include "src/core/gpu/cl/kernels/ClWinogradFilterTransformKernel.h" #include "src/core/gpu/cl/kernels/ClWinogradInputTransformKernel.h" #include "src/core/gpu/cl/kernels/ClWinogradOutputTransformKernel.h" #include "src/core/helpers/MemoryHelpers.h" #include "src/runtime/gpu/cl/utils/ClAuxTensorHandler.h" #include "support/Cast.h" using namespace arm_compute::experimental; namespace arm_compute { namespace opencl { namespace { Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataLayout data_layout) { Size2D output_tile = Size2D{}; const unsigned int kernel_max_dim = std::max(kernel_dims.width, kernel_dims.height); // Check if the input spatial dimensions are smaller than 4 const bool is_input_lt4_nchw = (input_dims.width <= 4 && input_dims.height <= 4) && (data_layout == DataLayout::NCHW); if(kernel_max_dim == 3U) { if(kernel_dims == Size2D(3U, 3U)) { output_tile = is_input_lt4_nchw ? Size2D(2U, 2U) : Size2D(4U, 4U); } else if(kernel_dims == Size2D(3U, 1U)) { output_tile = is_input_lt4_nchw ? Size2D(2U, 1U) : Size2D(4U, 1U); } else { output_tile = is_input_lt4_nchw ? Size2D(1U, 2U) : Size2D(1U, 4U); } } else if(kernel_max_dim == 5U) { output_tile = Size2D(kernel_dims.width == 1 ? 1U : 4U, kernel_dims.height == 1 ? 1U : 4U); } else if(kernel_max_dim == 7U) { output_tile = Size2D(kernel_dims.width == 1 ? 1U : 2U, kernel_dims.height == 1 ? 1U : 2U); } return output_tile; } bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size) { // Check if we want to configure a Winograd configuration which requires fast math using WinogradConfiguration = std::pair, std::pair>; std::vector fast_math_winograd = { WinogradConfiguration(std::pair(4, 4), std::pair(5, 5)), WinogradConfiguration(std::pair(2, 2), std::pair(7, 7)) }; auto p = std::make_pair(std::pair(output_tile.width, output_tile.height), std::pair(kernel_size.width, kernel_size.height)); return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end(); } Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { // Get indeces for the width and height const size_t idx_width = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT); // Input shape, kernel size and output tile const Size2D input_dims = Size2D(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height]); const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, src->data_layout()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(((conv_info.pad_left() > (kernel_size.x() / 2u)) || (conv_info.pad_right() > (kernel_size.x() / 2u))), "Winograd only supports padding up to half kernel size"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(((conv_info.pad_top() > (kernel_size.y() / 2u)) || (conv_info.pad_bottom() > (kernel_size.y() / 2u))), "Winograd only supports padding up to half kernel size"); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); //disable winograd for fp16 if fast math is false. ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true"); } const WinogradInfo winograd_info = WinogradInfo(output_tile, kernel_size, input_dims, conv_info, src->data_layout()); // Validate input transform const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*src, winograd_info); const TensorInfo input0 = src->clone()->set_tensor_shape(input0_shape); ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradInputTransformKernel::validate(src, &input0, winograd_info)); // Validate filter transform const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info); const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape); ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradFilterTransformKernel::validate(weights, &input1, winograd_info)); // Validate batched matrix multiply TensorShape batched_mm_output_shape = input0.tensor_shape(); batched_mm_output_shape[0] = input1.tensor_shape()[0]; const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape); ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false, GEMMLowpOutputStageInfo(), (src->data_type() == DataType::F16)))); // Configure output transform ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradOutputTransformKernel::validate(&batched_mm_output, biases, dst, winograd_info, act_info)); return Status{}; } } // namespace ClWinogradConv2d::ClWinogradConv2d() : _batched_mm(), _input_transform(std::make_unique()), _filter_transform(std::make_unique()), _output_transform(std::make_unique()), _border_handler(), _input0(), _input1(), _batched_mm_output(), _is_prepared(false), _aux_mem() { } ClWinogradConv2d::~ClWinogradConv2d() = default; void ClWinogradConv2d::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, biases, dst, conv_info, act_info, enable_fast_math)); // Get indices for the width and height const size_t idx_width = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT); // Input shape, kernel size and output tile const Size2D input_dims = Size2D(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height]); const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, src->data_layout()); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); //disable winograd for fp16 if fast math is false. ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true"); } const WinogradInfo winograd_info = WinogradInfo(output_tile, kernel_size, input_dims, conv_info, src->data_layout()); _is_prepared = false; // Configure input transform _input_transform->configure(compile_context, src, &_input0, winograd_info); _border_handler.configure(compile_context, src, _input_transform->border_size(), BorderMode::CONSTANT, PixelValue()); // Configure filter transform _filter_transform->configure(compile_context, weights, &_input1, winograd_info); // Configure batched matrix multiply _batched_mm.configure(compile_context, &_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false, GEMMLowpOutputStageInfo(), (src->data_type() == DataType::F16))); // Configure output transform _output_transform->configure(compile_context, &_batched_mm_output, biases, dst, winograd_info, act_info); _aux_mem = _batched_mm.workspace(); _aux_mem.push_back(MemoryInfo(offset_int_vec(2), MemoryLifetime::Temporary, _input0.total_size())); _aux_mem.push_back(MemoryInfo(offset_int_vec(3), MemoryLifetime::Persistent, _input1.total_size())); _aux_mem.push_back(MemoryInfo(offset_int_vec(4), MemoryLifetime::Temporary, _batched_mm_output.total_size())); } Status ClWinogradConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info, act_info, enable_fast_math)); return Status{}; } void ClWinogradConv2d::run(ITensorPack &tensors) { prepare(tensors); // Run input transform auto src = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_0)); auto biases = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_2)); auto dst = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST)); CLAuxTensorHandler input0(offset_int_vec(2), _input0, tensors, true); CLAuxTensorHandler input1(offset_int_vec(3), _input1, tensors, true); CLAuxTensorHandler batched_mm_output(offset_int_vec(4), _batched_mm_output, tensors, true); ITensorPack pack_it { { TensorType::ACL_SRC, src }, { TensorType::ACL_DST, input0.get() }, }; CLScheduler::get().enqueue_op(_border_handler, pack_it); CLScheduler::get().enqueue_op(*_input_transform, pack_it); // Run batched matrix multiplication ITensorPack pack_mm { { TensorType::ACL_SRC_0, input0.get() }, { TensorType::ACL_SRC_1, input1.get() }, { TensorType::ACL_DST, batched_mm_output.get() }, }; _batched_mm.run(pack_mm); // Run output transform ITensorPack pack_ot { { TensorType::ACL_SRC_0, batched_mm_output.get() }, { TensorType::ACL_SRC_1, biases }, { TensorType::ACL_DST, dst }, }; CLScheduler::get().enqueue_op(*_output_transform, pack_ot); } void ClWinogradConv2d::prepare(ITensorPack &tensors) { if(!_is_prepared) { auto weights = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_1)); ICLTensor *in1_aux = utils::cast::polymorphic_downcast(tensors.get_tensor(offset_int_vec(3))); CLAuxTensorHandler input1(_input1, *in1_aux); ITensorPack pack_ft { { TensorType::ACL_SRC, weights }, { TensorType::ACL_DST, input1.get() }, }; // Run filter transform and mark original weights as unused CLScheduler::get().enqueue_op(*_filter_transform, pack_ft, false); weights->mark_as_unused(); tensors.add_tensor(ACL_SRC_1, input1.get()); // Prepare GEMM and release reshaped weights if marked unused by ClGemm _batched_mm.prepare(tensors); CLScheduler::get().queue().finish(); _is_prepared = true; } } experimental::MemoryRequirements ClWinogradConv2d::workspace() const { return _aux_mem; } } // namespace opencl } // namespace arm_compute