/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/runtime/cpu/operators/CpuSoftmax.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "src/core/cpu/kernels/CpuSoftmaxKernel.h" #include "src/core/helpers/SoftmaxHelpers.h" namespace arm_compute { namespace cpu { template CpuSoftmaxGeneric::CpuSoftmaxGeneric() : _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _max(nullptr), _tmp(nullptr), _input_permuted(nullptr), _output_permuted(nullptr), _needs_permute(false) { } template void CpuSoftmaxGeneric::configure(const ITensorInfo *src, ITensorInfo *dst, float beta, int32_t axis) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(CpuSoftmaxGeneric::validate(src, dst, beta, axis)); const unsigned int actual_axis = static_cast(wrap_around(axis, static_cast(src->num_dimensions()))); _needs_permute = actual_axis > 0; if(_needs_permute) { _input_permuted = std::make_unique(); _permute_input.configure(src, _input_permuted.get(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis)); } // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case) // or it is the original input case (2D case) const ITensorInfo *tmp_input = (_needs_permute ? _input_permuted.get() : src); // Create intermediate tensors shapes TensorShape max_sum_shape = tmp_input->tensor_shape(); max_sum_shape.set(0, 1); const TensorInfo input_info = tmp_input->clone()->reset_padding().set_is_resizable(true); DataType tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->data_type()) ? DataType::F32 : tmp_input->data_type(); TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type)); TensorInfo max_info(tmp_input->clone()->set_tensor_shape(max_sum_shape)); // Init intermediate tensors _max = std::make_unique(max_info); _tmp = std::make_unique(tensor_info_tmp); // Configure kernels auto mk = std::make_unique(); mk->configure(tmp_input, _max.get()); _max_kernel = std::move(mk); auto sm = std::make_unique>(); if(_needs_permute) { _output_permuted = std::make_unique(); // The normalization kernel stores the result in a permuted output tensor sm->configure(tmp_input, _max.get(), _output_permuted.get(), beta, _tmp.get()); // Re-permute the permuted output into the requested (4D) output _permute_output.configure(_output_permuted.get(), dst, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis)); } else { // Softmax 2D case sm->configure(tmp_input, _max.get(), dst, beta, _tmp.get()); } _softmax_kernel = std::move(sm); } template Status CpuSoftmaxGeneric::validate(const ITensorInfo *src, const ITensorInfo *dst, float beta, int32_t axis) { // Perform validation step ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->num_dimensions() > 4, "Only up to 4 dimensions are supported"); ARM_COMPUTE_UNUSED(beta); ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast(-src->num_dimensions()) || static_cast(src->num_dimensions()) <= axis); // Create intermediate tensor info DataType tmp_data_type = src->data_type(); const TensorInfo tensor_info_tmp(src->clone()->set_data_type(tmp_data_type).set_is_resizable(true)); TensorShape max_sum_shape = src->tensor_shape(); max_sum_shape.set(0, 1); const TensorInfo tensor_info_max_sum(src->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(src->quantization_info()).set_is_resizable(true)); const TensorInfo dont_care; const unsigned int actual_axis = static_cast(wrap_around(axis, static_cast(src->num_dimensions()))); const bool needs_permute = actual_axis > 0; if(needs_permute) { const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis); const TensorShape permuted_shape = misc::shape_calculator::compute_permutation_output_shape(*src, permutation_vector); TensorInfo input_permuted(src->clone()->set_tensor_shape(permuted_shape)); ARM_COMPUTE_RETURN_ON_ERROR(CpuPermute::validate(src, &input_permuted, permutation_vector)); TensorInfo output_permuted(dst->clone()->set_tensor_shape(permuted_shape)); ARM_COMPUTE_RETURN_ON_ERROR(CpuPermute::validate(&output_permuted, dst, permutation_vector)); } ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuLogits1DMaxKernel::validate(src, &tensor_info_max_sum)); ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuLogits1DSoftmaxKernel::validate(&tensor_info_tmp, &tensor_info_max_sum, dst, beta, &dont_care)); return Status{}; } template void CpuSoftmaxGeneric::run(ITensorPack &tensors) { ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided"); ITensorPack max_pack; ITensorPack softmax_pack; if(_needs_permute) { ITensorPack permute_in_pack; permute_in_pack.add_tensor(TensorType::ACL_SRC, tensors.get_const_tensor(ACL_SRC)); permute_in_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_INT_2)); _permute_input.run(permute_in_pack); max_pack.add_tensor(TensorType::ACL_SRC, tensors.get_tensor(ACL_INT_2)); softmax_pack.add_tensor(TensorType::ACL_SRC_0, tensors.get_tensor(ACL_INT_2)); softmax_pack.add_tensor(TensorType::ACL_SRC_1, tensors.get_tensor(ACL_INT_1)); softmax_pack.add_tensor(TensorType::ACL_DST_0, tensors.get_tensor(ACL_INT_3)); softmax_pack.add_tensor(TensorType::ACL_DST_1, tensors.get_tensor(ACL_INT_0)); } else { max_pack.add_tensor(TensorType::ACL_SRC, tensors.get_const_tensor(ACL_SRC)); softmax_pack.add_tensor(TensorType::ACL_SRC_0, tensors.get_const_tensor(ACL_SRC)); softmax_pack.add_tensor(TensorType::ACL_SRC_1, tensors.get_tensor(ACL_INT_1)); softmax_pack.add_tensor(TensorType::ACL_DST_0, tensors.get_tensor(ACL_DST)); softmax_pack.add_tensor(TensorType::ACL_DST_1, tensors.get_tensor(ACL_INT_0)); } max_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_INT_1)); NEScheduler::get().schedule_op(_max_kernel.get(), Window::DimY, _max_kernel->window(), max_pack); NEScheduler::get().schedule_op(_softmax_kernel.get(), Window::DimY, _softmax_kernel->window(), softmax_pack); if(_needs_permute) { ITensorPack permute_out_pack; permute_out_pack.add_tensor(TensorType::ACL_SRC, tensors.get_tensor(ACL_INT_3)); permute_out_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_DST)); _permute_output.run(permute_out_pack); } } template experimental::MemoryRequirements CpuSoftmaxGeneric::workspace() const { experimental::MemoryRequirements req{}; req.push_back({ TensorType::ACL_INT_0, _tmp->total_size(), 0 }); req.push_back({ TensorType::ACL_INT_1, _max->total_size(), 0 }); if(_needs_permute) { req.push_back({ TensorType::ACL_INT_2, _input_permuted->total_size(), 0 }); req.push_back({ TensorType::ACL_INT_3, _output_permuted->total_size(), 0 }); } return req; } template class CpuSoftmaxGeneric; template class CpuSoftmaxGeneric; } // namespace cpu } // namespace arm_compute