/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/runtime/cpu/operators/CpuScale.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "src/core/cpu/kernels/CpuScaleKernel.h" #include "src/core/utils/ScaleUtils.h" #include "support/Rounding.h" namespace arm_compute { namespace cpu { namespace { void precompute_dx_dy_offsets(ITensor *dx, ITensor *dy, ITensor *offsets, float wr, float hr, SamplingPolicy sampling_policy, bool align_corners) { ARM_COMPUTE_ERROR_ON(offsets == nullptr); float sampling_offset = 0.0f; if(sampling_policy == SamplingPolicy::CENTER) { sampling_offset = 0.5f; } Window win; win.set(Window::DimX, Window::Dimension(0, offsets->info()->dimension(0), 1)); win.set(Window::DimY, Window::Dimension(0, offsets->info()->dimension(1), 1)); if(dx != nullptr && dy != nullptr) { // Pre-compute the offset and pixel's distance for BILINEAR interpolation Iterator offsets_it(offsets, win); Iterator dx_it(dx, win); Iterator dy_it(dy, win); execute_window_loop(win, [&](const Coordinates & id) { const float in_x = (id.x() + sampling_offset) * wr - sampling_offset; const float in_y = (id.y() + sampling_offset) * hr - sampling_offset; const int in_xi = std::floor(in_x); const int in_yi = std::floor(in_y); *reinterpret_cast(offsets_it.ptr()) = in_xi; *reinterpret_cast(dx_it.ptr()) = in_x - in_xi; *reinterpret_cast(dy_it.ptr()) = in_y - in_yi; }, offsets_it, dx_it, dy_it); } else { // Pre-compute the offset for NEAREST interpolation Iterator offsets_it(offsets, win); execute_window_loop(win, [&](const Coordinates & id) { const float float_in_xi = (id.x() + sampling_offset) * wr; const auto in_xi = static_cast(align_corners ? arm_compute::utils::rounding::round_half_away_from_zero(float_in_xi) : std::floor(float_in_xi)); *reinterpret_cast(offsets_it.ptr()) = in_xi; }, offsets_it); } } } // namespace CpuScale::CpuScale() : _scale_info(InterpolationPolicy::NEAREST_NEIGHBOR, BorderMode::UNDEFINED), _data_layout(DataLayout::UNKNOWN), _is_prepared(false) { } void CpuScale::configure(ITensorInfo *src, ITensorInfo *dst, const ScaleKernelInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(CpuScale::validate(src, dst, info)); _scale_info = info; // Get data layout and width/height indices _data_layout = _scale_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : _scale_info.data_layout; const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); // Compute the ratio between source width/height and destination width/height const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy); const auto wr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used); const auto hr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used); // Area interpolation behaves as Nearest Neighbour in case of up-sampling InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : _scale_info.interpolation_policy; // Get the tensor shape TensorShape shape(dst->dimension(idx_width)); shape.set(1, dst->dimension(idx_height), false); TensorInfo tensor_info_offsets(shape, Format::S32); TensorInfo tensor_info_dxdy(shape, Format::F32); auto dx = std::make_unique(tensor_info_dxdy); auto dy = std::make_unique(tensor_info_dxdy); auto offsets = std::make_unique(tensor_info_offsets); auto scale_kernel = std::make_unique(); switch(policy_to_use) { case InterpolationPolicy::NEAREST_NEIGHBOR: { scale_kernel->configure(src, nullptr, nullptr, offsets.get(), dst, info); break; } case InterpolationPolicy::BILINEAR: { scale_kernel->configure(src, dx.get(), dy.get(), offsets.get(), dst, info); break; } case InterpolationPolicy::AREA: { scale_kernel->configure(src, nullptr, nullptr, nullptr, dst, info); break; } default: ARM_COMPUTE_ERROR("Unsupported interpolation mode"); } _kernel = std::move(scale_kernel); } Status CpuScale::validate(const ITensorInfo *src, const ITensorInfo *dst, const ScaleKernelInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT); ITensorInfo *offsets = nullptr; ITensorInfo *dx = nullptr; ITensorInfo *dy = nullptr; // Get data layout and width/height indices const DataLayout data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); // Compute the ratio between source width/height and destination width/height const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy); const auto wr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used); const auto hr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used); // Area interpolation behaves as Nearest Neighbour in case of up-sampling InterpolationPolicy policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy; // Get the tensor shape of auxilary buffers const TensorShape shape(dst->dimension(idx_width), dst->dimension(idx_height)); TensorInfo tensor_info_offsets(shape, Format::S32); TensorInfo tensor_info_dx(shape, Format::F32); TensorInfo tensor_info_dy(shape, Format::F32); switch(policy_to_use) { case InterpolationPolicy::NEAREST_NEIGHBOR: offsets = &tensor_info_offsets; break; case InterpolationPolicy::BILINEAR: offsets = &tensor_info_offsets; dx = &tensor_info_dx; dy = &tensor_info_dy; break; default: break; } ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuScaleKernel::validate(src->clone().get(), dx, dy, offsets, dst->clone().get(), info)); return Status{}; } void CpuScale::prepare(ITensorPack &tensors) { if(!_is_prepared) { _is_prepared = true; const auto src = tensors.get_const_tensor(TensorType::ACL_SRC); auto dst = tensors.get_tensor(TensorType::ACL_DST); auto dx = tensors.get_tensor(TensorType::ACL_INT_0); auto dy = tensors.get_tensor(TensorType::ACL_INT_1); auto offsets = tensors.get_tensor(TensorType::ACL_INT_2); // Get data layout and width/height indices const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); // Compute the ratio between source width/height and destination width/height const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy); const auto wr = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_width), dst->info()->dimension(idx_width), is_align_corners_used); const auto hr = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), is_align_corners_used); // Area interpolation behaves as Nearest Neighbour in case of up-sampling InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : _scale_info.interpolation_policy; const SamplingPolicy sampling_policy = _scale_info.sampling_policy; switch(policy_to_use) { case InterpolationPolicy::NEAREST_NEIGHBOR: { // Pre-compute offsets for nearest interpolation precompute_dx_dy_offsets(nullptr, nullptr, offsets, wr, hr, sampling_policy, is_align_corners_used); break; } case InterpolationPolicy::BILINEAR: { // Pre-compute dx, dy and offsets for bilinear interpolation precompute_dx_dy_offsets(dx, dy, offsets, wr, hr, sampling_policy, is_align_corners_used); break; } case InterpolationPolicy::AREA: { break; } default: ARM_COMPUTE_ERROR("Unsupported interpolation mode"); } } } void CpuScale::run(ITensorPack &tensors) { ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided"); prepare(tensors); NEScheduler::get().schedule_op(_kernel.get(), Window::DimY, _kernel->window(), tensors); } } // namespace cpu } // namespace arm_compute