/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/runtime/cpu/operators/CpuGemm.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/MemoryHelpers.h" #include "src/runtime/cpu/utils/CpuAuxTensorHandler.h" using namespace arm_compute::experimental; using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace cpu { namespace { cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info) { cpu::AsmGemmInfo asm_info; asm_info.method = cpu::AsmConvMethod::Im2Col; asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d(); asm_info.depth_output_gemm3d = info.depth_output_gemm3d(); asm_info.activation_info = info.activation_info(); asm_info.fast_mode = info.fast_math(); return asm_info; } } // namespace void CpuGemm::configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d); ARM_COMPUTE_ERROR_THROW_ON(CpuGemm::validate(a, b, c, d, alpha, beta, gemm_info)); const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info); const bool is_c_bias = gemm_info.reshape_b_only_on_first_run(); bool run_optimised = bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, (is_c_bias) ? c : nullptr, d, asm_info)); // Check if we need to reshape the matrix B only on the first run _is_prepared = false; _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _run_vector_matrix_multiplication = a->dimension(1) < 2; _run_alpha_scale = alpha != 1.f; _run_bias_addition = c != nullptr && gemm_info.reshape_b_only_on_first_run(); _run_addition = beta != 0 && c != nullptr && !gemm_info.reshape_b_only_on_first_run(); _run_activation = gemm_info.activation_info().enabled() && (!run_optimised || (run_optimised && !cpu::CpuGemmAssemblyDispatch::is_activation_supported(gemm_info.activation_info()))); if(run_optimised) { const ITensorInfo *c_to_use = is_c_bias ? c : nullptr; _asm_glue = std::make_unique(); _asm_glue->configure(a, b, c_to_use, d, asm_info); ARM_COMPUTE_ERROR_ON(!_asm_glue->is_configured()); auto asm_mem_req = _asm_glue->workspace(); _aux_mem[AsmGemmWorkspace] = asm_mem_req[AsmGemmWorkspace]; _aux_mem[Pretraspose] = asm_mem_req[Pretraspose]; // Scale product by alpha if(_run_alpha_scale) { _alpha_scale_func = std::make_unique(); _alpha_scale_func->configure(d, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, alpha, 0.f)); } } else { // Pick output tensor in case bias addition should be performed ITensorInfo *gemm_output_to_use = (_run_bias_addition) ? &_tmp_d : d; _mm_kernel = std::make_unique(); // Select between GEMV and GEMM if(_run_vector_matrix_multiplication) { // Configure the matrix multiply kernel _mm_kernel->configure(a, b, gemm_output_to_use, alpha, false); } else { const int m = a->dimension(1); const int n = b->dimension(0); const int k = a->dimension(0); // Configure interleave kernel _interleave_kernel = std::make_unique(); _interleave_kernel->configure(a, &_tmp_a); _aux_mem[InterleavedLHS] = MemoryInfo(offset_int_vec(InterleavedLHS), MemoryLifetime::Temporary, _tmp_a.total_size()); // Configure transpose kernel _transpose_kernel = std::make_unique(); _transpose_kernel->configure(b, &_tmp_b); _aux_mem[TransposedRHS] = MemoryInfo(offset_int_vec(TransposedRHS), MemoryLifetime::Persistent, _tmp_b.total_size()); // Configure matrix multiplication kernel _mm_kernel->configure(&_tmp_a, &_tmp_b, gemm_output_to_use, alpha, true, GEMMReshapeInfo(m, n, k)); } if(_run_bias_addition) { _add_bias = std::make_unique(); _add_bias->configure(gemm_output_to_use, c, d, ConvertPolicy::SATURATE); _aux_mem[TempResult] = MemoryInfo(offset_int_vec(TempResult), MemoryLifetime::Temporary, _tmp_d.total_size()); } } // Configure matrix addition kernel if(_run_addition) { _ma_kernel = std::make_unique(); _ma_kernel->configure(c, d, beta); } // Configure activation if(_run_activation) { _activation_func = std::make_unique(); _activation_func->configure(d, nullptr, gemm_info.activation_info()); } } Status CpuGemm::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_UNUSED(alpha); const bool is_c_bias = gemm_info.reshape_b_only_on_first_run(); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a); ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::BFLOAT16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b); ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); if(a->data_type() != DataType::BFLOAT16) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, d); } if(c != nullptr && !is_c_bias) { ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0); ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(c, d); ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1), "The C matrix must have the same number of rows as the matrix A"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->dimension(0), "The C matrix must have the same number of columns as the matrix B"); } if(d->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != d->dimension(0)); if(gemm_info.depth_output_gemm3d() != 0) { if(gemm_info.reinterpret_input_as_3d()) { ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1)); ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != d->dimension(2)); } else { ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1) * d->dimension(2)); } } else { ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1)); } } // Check if we need to run the optimized assembly kernel cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info); const bool run_optimised = bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, is_c_bias ? c : nullptr, d, asm_info)); if(!run_optimised) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "CpuGemm cannot reinterpret the input tensor as 3D"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0, "CpuGemm cannot reinterpret the output tensor as 3D"); // Check if the first input tensor is a vector. const bool run_vector_matrix_multiplication = a->dimension(1) < 2; // Check if we need to reshape the matrix A and matrix B const bool run_interleave_transpose = !run_vector_matrix_multiplication && !(gemm_info.reshape_b_only_on_first_run()); // Arguments used by GEMMReshapeInfo // If we pass the matrix A and matrix B reshaped to CpuGemmMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to GEMMReshapeInfo // in order to know how the matrices have been reshaped const int m = a->dimension(1); const int n = b->dimension(0); const int k = a->dimension(0); int mult_transpose1xW_width = 1; int mult_interleave4x4_height = 1; const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d()); const ITensorInfo *matrix_a_info = a; const ITensorInfo *matrix_b_info = b; TensorInfo tmp_a_info{}; TensorInfo tmp_b_info{}; TensorInfo tmp_output_info = *d->clone(); if(run_interleave_transpose) { matrix_a_info = &tmp_a_info; matrix_b_info = &tmp_b_info; // Validate interleave kernel auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d()))); ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmInterleave4x4Kernel::validate(a, &tmp_a_info)); // Validate transpose kernel auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width))); ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmTranspose1xWKernel::validate(b, &tmp_b_info)); } // Validate matrix multiply auto_init_if_empty(tmp_output_info, matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info))); ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info)); if(c != nullptr && gemm_info.reshape_b_only_on_first_run()) { ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuAdd::validate(&tmp_output_info, c, d, ConvertPolicy::SATURATE)); } } // Validate matrix addition kernel if(beta != 0 && c != nullptr && !is_c_bias) { ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixAdditionKernel::validate(c, d, beta)); } // Validate activation const ActivationLayerInfo &activation = gemm_info.activation_info(); if(activation.enabled()) { ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuActivation::validate(d, nullptr, activation)); } return Status{}; } void CpuGemm::run(ITensorPack &tensors) { prepare(tensors); auto a = tensors.get_const_tensor(ACL_SRC_0); auto b = tensors.get_const_tensor(ACL_SRC_1); auto c = tensors.get_const_tensor(ACL_SRC_2); auto d = tensors.get_tensor(ACL_DST); if(_asm_glue->is_configured()) { // Pass c to asm dispatch only if it's the bias tensor ITensorPack asm_pack = tensors; asm_pack.add_const_tensor(ACL_SRC_2, (_reshape_b_only_on_first_run) ? c : nullptr); _asm_glue->run(asm_pack); if(_run_alpha_scale) { ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } }; _alpha_scale_func->run(pack); } } else { CpuAuxTensorHandler interleaved_a(offset_int_vec(InterleavedLHS), _tmp_a, tensors, true); CpuAuxTensorHandler transposed_b(offset_int_vec(TransposedRHS), _tmp_b, tensors, true); CpuAuxTensorHandler temp_d(offset_int_vec(TempResult), _tmp_d, tensors, true); ITensorPack mm_pack{ { ACL_SRC_0, a }, { ACL_SRC_1, b }, { ACL_DST, (_run_bias_addition) ? temp_d.get() : d } }; if(!_run_vector_matrix_multiplication) { // Run interleave kernel ITensorPack interleave_pack{ { ACL_SRC, a }, { ACL_DST, interleaved_a.get() } }; NEScheduler::get().schedule_op(_interleave_kernel.get(), Window::DimY, _interleave_kernel->window(), interleave_pack); if(!_reshape_b_only_on_first_run) { // Run transpose kernel ITensorPack transpose_pack{ { ACL_SRC, b }, { ACL_DST, transposed_b.get() } }; NEScheduler::get().schedule_op(_transpose_kernel.get(), Window::DimY, _transpose_kernel->window(), transpose_pack); } // Use reshaped matrices mm_pack.add_const_tensor(ACL_SRC_0, interleaved_a.get()); mm_pack.add_const_tensor(ACL_SRC_1, transposed_b.get()); } NEScheduler::get().schedule_op(_mm_kernel.get(), _run_vector_matrix_multiplication ? Window::DimX : Window::DimY, _mm_kernel->window(), mm_pack); // Run bias addition kernel if(_run_bias_addition) { ITensorPack pack{ { ACL_SRC_0, temp_d.get() }, { ACL_SRC_1, c }, { ACL_DST, d } }; _add_bias->run(pack); } } // Run matrix addition kernel if(_run_addition) { ITensorPack c_add_pack{ { ACL_SRC, c }, { ACL_DST, d } }; NEScheduler::get().schedule_op(_ma_kernel.get(), Window::DimY, _ma_kernel->window(), c_add_pack); } // Run activation function if(_run_activation) { ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } }; _activation_func->run(pack); } } void CpuGemm::prepare(ITensorPack &tensors) { if(!_is_prepared) { if(_asm_glue->is_configured()) { _asm_glue->prepare(tensors); } else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication) { const ITensor *b = tensors.get_const_tensor(ACL_SRC_1); ITensor *b_aux = utils::cast::polymorphic_cast(tensors.get_tensor(offset_int_vec(TransposedRHS))); ARM_COMPUTE_ERROR_ON_NULLPTR(b, b_aux); CpuAuxTensorHandler transposed_b(_tmp_b, *b_aux); ITensorPack transpose_pack{ { ACL_SRC, b }, { ACL_DST, transposed_b.get() } }; NEScheduler::get().schedule_op(_transpose_kernel.get(), Window::DimY, _transpose_kernel->window(), transpose_pack); } _is_prepared = true; } } experimental::MemoryRequirements CpuGemm::workspace() const { return _aux_mem; } } // namespace cpu } // namespace arm_compute