/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/TensorAllocator.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/runtime/MemoryGroup.h" #include "arm_compute/runtime/MemoryRegion.h" #include "support/ToolchainSupport.h" #include using namespace arm_compute; namespace { bool validate_subtensor_shape(const TensorInfo &parent_info, const TensorInfo &child_info, const Coordinates &coords) { bool is_valid = true; const TensorShape &parent_shape = parent_info.tensor_shape(); const TensorShape &child_shape = child_info.tensor_shape(); const size_t parent_dims = parent_info.num_dimensions(); const size_t child_dims = child_info.num_dimensions(); if(child_dims <= parent_dims) { for(size_t num_dimensions = child_dims; num_dimensions > 0; --num_dimensions) { const size_t child_dim_size = coords[num_dimensions - 1] + child_shape[num_dimensions - 1]; if((coords[num_dimensions - 1] < 0) || (child_dim_size > parent_shape[num_dimensions - 1])) { is_valid = false; break; } } } else { is_valid = false; } return is_valid; } } // namespace TensorAllocator::TensorAllocator(Tensor *owner) : _associated_memory_group(nullptr), _memory(), _owner(owner) { } TensorAllocator::~TensorAllocator() { info().set_is_resizable(true); } TensorAllocator::TensorAllocator(TensorAllocator &&o) noexcept : ITensorAllocator(std::move(o)), _associated_memory_group(o._associated_memory_group), _memory(std::move(o._memory)), _owner(o._owner) { o._associated_memory_group = nullptr; o._memory = Memory(); o._owner = nullptr; } TensorAllocator &TensorAllocator::operator=(TensorAllocator &&o) noexcept { if(&o != this) { _associated_memory_group = o._associated_memory_group; o._associated_memory_group = nullptr; _memory = std::move(o._memory); o._memory = Memory(); _owner = o._owner; o._owner = nullptr; ITensorAllocator::operator=(std::move(o)); } return *this; } void TensorAllocator::init(const TensorAllocator &allocator, const Coordinates &coords, TensorInfo sub_info) { // Get parent info const TensorInfo parent_info = allocator.info(); // Check if coordinates and new shape are within the parent tensor ARM_COMPUTE_ERROR_ON(!validate_subtensor_shape(parent_info, sub_info, coords)); ARM_COMPUTE_UNUSED(validate_subtensor_shape); // Copy pointer to buffer _memory = Memory(allocator._memory.region()); // Init tensor info with new dimensions size_t total_size = parent_info.offset_element_in_bytes(coords) + sub_info.total_size() - sub_info.offset_first_element_in_bytes(); sub_info.init(sub_info.tensor_shape(), sub_info.format(), parent_info.strides_in_bytes(), parent_info.offset_element_in_bytes(coords), total_size); // Set TensorInfo init(sub_info); } uint8_t *TensorAllocator::data() const { return (_memory.region() == nullptr) ? nullptr : reinterpret_cast(_memory.region()->buffer()); } void TensorAllocator::allocate() { if(_associated_memory_group == nullptr) { _memory.set_owned_region(support::cpp14::make_unique(info().total_size(), alignment())); } else { _associated_memory_group->finalize_memory(_owner, _memory, info().total_size(), alignment()); } info().set_is_resizable(false); } void TensorAllocator::free() { _memory.set_region(nullptr); info().set_is_resizable(true); } Status TensorAllocator::import_memory(void *memory) { ARM_COMPUTE_RETURN_ERROR_ON(memory == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(_associated_memory_group != nullptr); ARM_COMPUTE_RETURN_ERROR_ON(alignment() != 0 && !arm_compute::utility::check_aligned(memory, alignment())); _memory.set_owned_region(support::cpp14::make_unique(memory, info().total_size())); info().set_is_resizable(false); return Status{}; } void TensorAllocator::set_associated_memory_group(MemoryGroup *associated_memory_group) { ARM_COMPUTE_ERROR_ON(associated_memory_group == nullptr); ARM_COMPUTE_ERROR_ON(_associated_memory_group != nullptr); ARM_COMPUTE_ERROR_ON(_memory.region() != nullptr && _memory.region()->buffer() != nullptr); _associated_memory_group = associated_memory_group; } uint8_t *TensorAllocator::lock() { ARM_COMPUTE_ERROR_ON(_memory.region() == nullptr); return reinterpret_cast(_memory.region()->buffer()); } void TensorAllocator::unlock() { }