/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/NEON/kernels/NEWinogradConvolutionLayerKernel.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/NEON/functions/NEGEMMAssemblyDispatch.h" #include "support/ToolchainSupport.h" #include "arm_compute/core/NEON/kernels/convolution/winograd/winograd.hpp" namespace arm_compute { namespace { inline Status validate_kernel_3x3(const Size2D input_dims, const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { if(input_dims.width > 4 && input_dims.height > 4) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); } else { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); } if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_5x5(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_3x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_1x3(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_5x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_1x5(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_7x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Status validate_kernel_1x7(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel::validate(input, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel::validate(batched_mm_output, biases, output, winograd_info))); if(act_info.enabled()) { NEActivationLayer::validate(output, nullptr, act_info); } return Status{}; } inline Tensor4DShape internal_get_input_shape(const arm_compute::ITensor *input) { const DataLayout data_layout = input->info()->data_layout(); const int in_width = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)); const int in_height = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)); const int in_channels = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)); const int in_batches = input->info()->dimension(3); return Tensor4DShape{ in_batches, in_height, in_width, in_channels }; } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info) { ARM_COMPUTE_UNUSED(output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides."); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } return INEWinogradLayerTransformWeightsKernel::validate(input, weights); } Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims) { Size2D output_tile = Size2D{}; if(kernel_dims == Size2D(3U, 3U)) { output_tile = (input_dims.width <= 4 && input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U); } else if(kernel_dims == Size2D(5U, 5U)) { output_tile = Size2D(2U, 2U); } else if(kernel_dims == Size2D(1U, 3U)) { output_tile = Size2D(1U, 6U); } else if(kernel_dims == Size2D(3U, 1U)) { output_tile = Size2D(6U, 1U); } else if(kernel_dims == Size2D(1U, 5U)) { output_tile = Size2D(1U, 4U); } else if(kernel_dims == Size2D(5U, 1U)) { output_tile = Size2D(4U, 1U); } else if(kernel_dims == Size2D(7U, 1U)) { output_tile = Size2D(2U, 1U); } else if(kernel_dims == Size2D(1U, 7U)) { output_tile = Size2D(1U, 2U); } return output_tile; } bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size) { // Check if we want to configure a Winograd configuration which requires fast math using WinogradConfiguration = std::pair, std::pair>; const std::vector fast_math_winograd = { WinogradConfiguration(std::pair(2, 2), std::pair(5, 5)), WinogradConfiguration(std::pair(4, 4), std::pair(5, 5)) }; auto p = std::make_pair(std::pair(output_tile.width, output_tile.height), std::pair(kernel_size.width, kernel_size.height)); return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end(); } } //namespace NEWinogradConvolutionLayer::NEWinogradConvolutionLayer(const std::shared_ptr &memory_manager) : _memory_group(memory_manager), _gemm_function(memory_manager), _transform_input_kernel(nullptr), _transform_output_kernel(nullptr), _transform_weights_kernel(nullptr), _activationlayer_function(), _permute_input(), _permute_weights(), _permute_output(), _input_transformed(), _output_transformed(), _input_workspace(), _output_workspace(), _kernel_storage(), _input_nhwc(), _output_nhwc(), _weights_hwio(), _input(), _weights(), _output(), _is_prepared(false), _is_activationlayer_enabled(false) { } void NEWinogradConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info)); // Get indices for the width and height const DataLayout data_layout = input->info()->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const Size2D input_dims = Size2D(input->info()->dimension(width_idx), input->info()->dimension(height_idx)); const Size2D kernel_size = Size2D(weights->info()->dimension(width_idx), weights->info()->dimension(height_idx)); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true"); } _weights = weights; _input = input; _output = output; _is_prepared = false; std::unique_ptr> transform_input_kernel; std::unique_ptr> transform_weights_kernel; std::unique_ptr> transform_output_kernel; int n_gemms = 0; int N_BLOCK = 0; // Size of block used by GEMM. if(kernel_size == Size2D(3, 3)) { if(input->info()->dimension(width_idx) > 4 && input->info()->dimension(height_idx) > 4) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } } else if(kernel_size == Size2D(5, 5)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(1, 3)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(3, 1)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(1, 5)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(5, 1)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(1, 7)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(7, 1)) { using config = NEWinogradLayerConfiguration; transform_input_kernel = support::cpp14::make_unique(); transform_weights_kernel = support::cpp14::make_unique(); transform_output_kernel = support::cpp14::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else { ARM_COMPUTE_ERROR("Not supported."); } const PaddingType use_padding_type = (conv_info.pad_top() != 0u || conv_info.pad_left() != 0) ? PADDING_SAME : PADDING_VALID; const bool use_same_padding = use_padding_type == PADDING_SAME; // Get convolved dimensions const int in_channels = input->info()->dimension(channel_idx); const int out_channels = output->info()->dimension(channel_idx); const Tensor4DShape in_shape(internal_get_input_shape(input)); const DataType data_type = input->info()->data_type(); const size_t data_type_size = input->info()->element_size(); // Get the memory required to instantiate a new Winograd operator. constexpr size_t storage_alignment = 64; // Kernel Storage const size_t kernel_storage_size = transform_weights_kernel->get_weight_storage_size(out_channels, in_channels) * data_type_size; // Input storage const size_t input_storage_size = transform_input_kernel->get_input_storage_size(in_shape.n_batches, in_shape.n_channels, in_shape.n_rows, in_shape.n_cols, use_same_padding) * data_type_size; // Output storage const size_t output_storage_size = transform_output_kernel->get_output_storage_size(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels, use_same_padding) * data_type_size; ; const KernelShape kernel_shape({ out_channels, static_cast(kernel_size.height), static_cast(kernel_size.width), in_channels }); const int kernel_matrix_stride = transform_weights_kernel->get_matrix_stride(kernel_shape); const int output_matrix_stride = transform_output_kernel->get_matrix_stride(kernel_shape, in_shape, use_padding_type); const auto output_shape(transform_output_kernel->get_output_shape(kernel_shape, in_shape, use_padding_type)); const int input_matrix_stride = transform_input_kernel->get_matrix_stride(kernel_shape, in_shape, use_padding_type); // Configure GEMM const int tile_rows = iceildiv(output_shape.n_rows, output_tile.height); const int tile_cols = iceildiv(output_shape.n_cols, output_tile.width); const int m = in_shape.n_batches * tile_rows * tile_cols; const int k = in_shape.n_channels; const int n = out_channels; const int kernel_matrix_row_stride = roundup(out_channels, N_BLOCK); const int output_matrix_row_stride = kernel_matrix_row_stride; TensorShape a_shape(k, m, 1, n_gemms); Strides a_strides(data_type_size); a_strides.set(1, a_strides[0] * k); //a_strides.set(2, data_type_size * input_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0. a_strides.set(2, 0); a_strides.set(3, data_type_size * input_matrix_stride); TensorShape b_shape(n, k, n_gemms); Strides b_strides(data_type_size); b_strides.set(1, data_type_size * kernel_matrix_row_stride); b_strides.set(2, data_type_size * kernel_matrix_stride); TensorShape d_shape(n, m, 1, n_gemms); Strides d_strides(data_type_size); d_strides.set(1, data_type_size * output_matrix_row_stride); //d_strides.set(2, data_type_size * output_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0. d_strides.set(2, 0); d_strides.set(3, data_type_size * output_matrix_stride); TensorInfo a_info{}; TensorInfo b_info{}; TensorInfo d_info{}; a_info.init(a_shape, 1, data_type, a_strides, 0, input_storage_size); b_info.init(b_shape, 1, data_type, b_strides, 0, kernel_storage_size); d_info.init(d_shape, 1, data_type, d_strides, 0, output_storage_size); _input_transformed.allocator()->init(a_info, storage_alignment); _kernel_storage.allocator()->init(b_info, storage_alignment); _output_transformed.allocator()->init(d_info, storage_alignment); // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output() TensorInfo info(TensorShape(_output->info()->dimension(2), _output->info()->dimension(0), _output->info()->dimension(1), _output->info()->dimension(3)), 1, _output->info()->data_type()); _output_nhwc.allocator()->init(info); const ITensor *input_to_use = _input; ITensor *output_to_use = _output; PermutationVector weights_permutation_vector(3U, 0U, 1U, 2U); const unsigned int max_num_threads = NEScheduler::get().num_threads(); // Configure the kernel to transform the input tensor from NCHW -> NHWC if(data_layout == DataLayout::NCHW) { _memory_group.manage(&_input_nhwc); _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U)); input_to_use = &_input_nhwc; weights_permutation_vector = PermutationVector(3U, 2U, 0U, 1U); } // Configure input transform kernel _memory_group.manage(&_input_transformed); _memory_group.manage(&_input_workspace); transform_input_kernel->configure(input_to_use, in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type, &_input_transformed, input_matrix_stride, &_input_workspace); const size_t input_workspace_size = transform_input_kernel->get_working_space_size(max_num_threads); TensorInfo input_workspace_info(TensorShape(input_workspace_size), 1, _input->info()->data_type()); _input_workspace.allocator()->init(input_workspace_info); _input_workspace.allocator()->allocate(); if(data_layout == DataLayout::NCHW) { _input_nhwc.allocator()->allocate(); } // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map] _permute_weights.configure(weights, &_weights_hwio, weights_permutation_vector); transform_weights_kernel->configure(&_weights_hwio, &_kernel_storage, kernel_matrix_stride, out_channels, in_channels); // Configure GEMM function _memory_group.manage(&_output_transformed); _gemm_function.configure(&_input_transformed, &_kernel_storage, nullptr, &_output_transformed, 1.0f, 0.f); _input_transformed.allocator()->allocate(); // Configure output transform function // The biases tensor has not been allocated at this point in time, the output transform will add the biases to the final result in the run() method if(data_layout == DataLayout::NCHW) { _memory_group.manage(&_output_nhwc); output_to_use = &_output_nhwc; } transform_output_kernel->configure(biases, &_output_transformed, output_matrix_stride, output_to_use, in_shape.n_batches, output_shape.n_rows, output_shape.n_cols, out_channels, &_output_workspace); const size_t output_workspace_size = transform_output_kernel->get_working_space_size(max_num_threads); TensorInfo output_workspace_info(TensorShape(output_workspace_size), 1, _output->info()->data_type()); _output_workspace.allocator()->init(output_workspace_info); _output_workspace.allocator()->allocate(); _output_transformed.allocator()->allocate(); // Reorder the convoluted output to ACL's ordering NCHW if(data_layout == DataLayout::NCHW) { _permute_output.configure(&_output_nhwc, _output, PermutationVector(1U, 2U, 0U)); _output_nhwc.allocator()->allocate(); } _transform_input_kernel = std::move(transform_input_kernel); _transform_weights_kernel = std::move(transform_weights_kernel); _transform_output_kernel = std::move(transform_output_kernel); //Configure Activation Layer _is_activationlayer_enabled = act_info.enabled(); if(_is_activationlayer_enabled) { _activationlayer_function.configure(_output, nullptr, act_info); } } void NEWinogradConvolutionLayer::run() { const DataLayout data_layout = _input->info()->data_layout(); prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(data_layout == DataLayout::NCHW) { //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC _permute_input.run(); } // Transform input tensor to the winograd domain NEScheduler::get().schedule(_transform_input_kernel.get(), Window::DimX); //Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs _gemm_function.run(); // Transform output tensor to the spatial domain NEScheduler::get().schedule(_transform_output_kernel.get(), Window::DimX); if(data_layout == DataLayout::NCHW) { // Reorder the convoluted output to ACL's ordering NCHW _permute_output.run(); } if(_is_activationlayer_enabled) { _activationlayer_function.run(); } } Status NEWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info)); // Get indices for the width and height const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); // Input shape, kernel size and output tile const Size2D input_dims = Size2D(input->dimension(idx_width), input->dimension(idx_height)); const Size2D kernel_size = Size2D(weights->dimension(idx_width), weights->dimension(idx_height)); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true"); } const WinogradInfo winograd_info = WinogradInfo(output_tile, kernel_size, input_dims, conv_info, input->data_layout()); // Validate input transform const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info); const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape); // Validate filter transform const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info); const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape); // Validate batched matrix multiply TensorShape batched_mm_output_shape = input0.tensor_shape(); batched_mm_output_shape[0] = input1.tensor_shape()[0]; const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape); if(kernel_size == Size2D(3, 3)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported"); return validate_kernel_3x3(input_dims, input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else if(kernel_size == Size2D(5, 5)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported"); return validate_kernel_5x5(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } if(kernel_size == Size2D(3, 1)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported"); return validate_kernel_3x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else if(kernel_size == Size2D(1, 3)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported"); return validate_kernel_1x3(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else if(kernel_size == Size2D(5, 1)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported"); return validate_kernel_5x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else if(kernel_size == Size2D(1, 5)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported"); return validate_kernel_1x5(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else if(kernel_size == Size2D(7, 1)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported"); return validate_kernel_7x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else if(kernel_size == Size2D(1, 7)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported"); return validate_kernel_1x7(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info); } else { ARM_COMPUTE_RETURN_ERROR_MSG("Kernel shape not supported"); } return Status{}; } void NEWinogradConvolutionLayer::prepare() { if(!_is_prepared) { // Permute weights _weights_hwio.allocator()->allocate(); _permute_weights.run(); _weights->mark_as_unused(); // Transform weights _kernel_storage.allocator()->allocate(); NEScheduler::get().schedule(_transform_weights_kernel.get(), Window::DimX); _weights_hwio.allocator()->free(); _is_prepared = true; } } } // namespace arm_compute