/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/NEON/kernels/NESoftmaxLayerKernel.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "utils/TypePrinter.h" #include namespace arm_compute { NESoftmaxLayer::NESoftmaxLayer(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _max_kernel(), _softmax_kernel(), _flat_or_reshape_kernel_ptr(nullptr), _fill_border_kernel(), _reshape_kernel(), _max(), _tmp(), _input_flattened(), _output_flattened(), _needs_flattening(false) { } void NESoftmaxLayer::configure_reshape_input_kernel(const ITensor *input, const ITensor *output, size_t axis) { // Flatten the input const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input->info(), axis); // Initialize the flat input _input_flattened.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten)); // If we need to flatten the input, we can use NEFlattenKernel or NEReshapeKernel // If flattening on the third axes, we use NEFlattenKernel. // In all other cases we have to use NEReshapeKernel if(axis != 3) { auto reshape_kernel_ptr = support::cpp14::make_unique(); reshape_kernel_ptr->configure(input, &_input_flattened); _flat_or_reshape_kernel_ptr = std::move(reshape_kernel_ptr); } else { auto flatten_kernel_ptr = support::cpp14::make_unique(); flatten_kernel_ptr->configure(input, &_input_flattened); _flat_or_reshape_kernel_ptr = std::move(flatten_kernel_ptr); } // We need to init the output tensor here. Indeed, the reshape kernel expects // both tensors to be already initialized auto_init_if_empty(*output->info(), *input->info()->clone()); } void NESoftmaxLayer::configure(ITensor *input, ITensor *output, float beta, size_t axis) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayer::validate(input->info(), output->info(), beta, axis)); // We don't need flattening only in the case the input is 2D and axis is 1 _needs_flattening = axis != 1; // If we are dealing with a 4D tensor, we will: // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor // - Execute all the pipeline (reduction + normalization) on the flattened tensor // - Reshape the flattened output into the real output if(_needs_flattening) { // Add to the memory manager _input_flattened _memory_group.manage(&_input_flattened); // Configure _flatten_kernel and _input_flattened configure_reshape_input_kernel(input, output, axis); } // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case) // or it is the original input case (2D case) ITensor *input_2D = (_needs_flattening ? &_input_flattened : input); // Create intermediate tensors shapes const TensorInfo input_info = input_2D->info()->clone()->reset_padding().set_is_resizable(true); DataType tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::F32 : input_2D->info()->data_type(); TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type)); // Init intermediate tensors TensorShape max_sum_shape = input_2D->info()->tensor_shape(); max_sum_shape.set(0, 1); _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape)); _tmp.allocator()->init(tensor_info_tmp); // Manage intermediate buffers _memory_group.manage(&_max); _memory_group.manage(&_tmp); // Configure Kernels _max_kernel.configure(input_2D, &_max); if(_needs_flattening) { // Add to the memory manager _output_flattened _memory_group.manage(&_output_flattened); // The normalization kernel stores the result in a flat output tensor _softmax_kernel.configure(input_2D, &_max, &_output_flattened, beta, &_tmp); _input_flattened.allocator()->allocate(); // Reshape the flat output into the requested (4D) output _reshape_kernel.configure(&_output_flattened, output); // Allocate the intermediate flat tensors _output_flattened.allocator()->allocate(); } else { // Softmax 2D case _fill_border_kernel.configure(input_2D, _max_kernel.border_size(), BorderMode::REPLICATE); _softmax_kernel.configure(input_2D, &_max, output, beta, &_tmp); } // Allocate intermediate buffers _max.allocator()->allocate(); _tmp.allocator()->allocate(); } Status NESoftmaxLayer::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, size_t axis) { // Perform validation step ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported"); ARM_COMPUTE_UNUSED(beta); ARM_COMPUTE_RETURN_ERROR_ON(axis < 1 || input->num_dimensions() < axis); // Create intermediate tensor info DataType tmp_data_type = input->data_type(); const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true)); TensorShape max_sum_shape = input->tensor_shape(); max_sum_shape.set(0, 1); const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true)); const TensorInfo dont_care; const bool needs_flattening = (axis != 1); if(needs_flattening) { const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input, axis); TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true)); if(axis != 3) { ARM_COMPUTE_RETURN_ON_ERROR(NEReshapeLayerKernel::validate(input, &tensor_info_flat)); } else { ARM_COMPUTE_RETURN_ON_ERROR(NEFlattenLayerKernel::validate(input, &tensor_info_flat)); } } ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum)); ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DSoftmaxKernel::validate(&tensor_info_tmp, &tensor_info_max_sum, output, beta, &dont_care)); return Status{}; } void NESoftmaxLayer::run() { MemoryGroupResourceScope scope_mg(_memory_group); if(_needs_flattening) { NEScheduler::get().schedule(_flat_or_reshape_kernel_ptr.get(), Window::DimY); } NEScheduler::get().schedule(&_fill_border_kernel, Window::DimY); NEScheduler::get().schedule(&_max_kernel, Window::DimY); NEScheduler::get().schedule(&_softmax_kernel, Window::DimY); if(_needs_flattening) { NEScheduler::get().schedule(&_reshape_kernel, Window::DimY); } } } // namespace arm_compute