/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/Tensor.h" #include "src/core/cpu/kernels/CpuSoftmaxKernel.h" #include "src/core/helpers/SoftmaxHelpers.h" #include "src/runtime/cpu/operators/CpuSoftmax.h" namespace arm_compute { template struct NESoftmaxLayerGeneric::Impl { const ITensor *src{ nullptr }; ITensor *dst{ nullptr }; Tensor max{ nullptr }; Tensor tmp{ nullptr }; Tensor input_permuted{ nullptr }; Tensor output_permuted{ nullptr }; std::unique_ptr> op{ nullptr }; }; template NESoftmaxLayerGeneric::NESoftmaxLayerGeneric(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _impl(std::make_unique()) { } template NESoftmaxLayerGeneric::NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&) = default; template NESoftmaxLayerGeneric &NESoftmaxLayerGeneric::operator=(NESoftmaxLayerGeneric &&) = default; template NESoftmaxLayerGeneric::~NESoftmaxLayerGeneric() = default; template void NESoftmaxLayerGeneric::configure(ITensor *input, ITensor *output, float beta, int32_t axis) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); _impl->src = input; _impl->dst = output; _impl->op = std::make_unique>(); _impl->op->configure(input->info(), output->info(), beta, axis); const unsigned int actual_axis = static_cast(wrap_around(axis, static_cast(input->info()->num_dimensions()))); const bool needs_permute = actual_axis > 0; if(needs_permute) { // Add to the memory manager _input_permuted auto permute_input = std::make_unique(); _memory_group.manage(&_impl->input_permuted); permute_input->configure(input->info(), _impl->input_permuted.info(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis)); } // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case) // or it is the original input case (2D case) ITensor *tmp_input = (needs_permute ? &_impl->input_permuted : input); // Create intermediate tensors shapes const TensorInfo input_info = tmp_input->info()->clone()->reset_padding().set_is_resizable(true); DataType tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->info()->data_type()) ? DataType::F32 : tmp_input->info()->data_type(); TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type)); // Init intermediate tensors TensorShape max_sum_shape = tmp_input->info()->tensor_shape(); max_sum_shape.set(0, 1); _impl->max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape)); _impl->tmp.allocator()->init(tensor_info_tmp); // Manage intermediate buffers _memory_group.manage(&_impl->max); _memory_group.manage(&_impl->tmp); // Configure kernels auto max_kernel = std::make_unique(); auto softmax_kernel = std::make_unique>(); max_kernel->configure(tmp_input->info(), _impl->max.info()); if(needs_permute) { auto permute_output = std::make_unique(); // Add to the memory manager _output_permuted _memory_group.manage(&_impl->output_permuted); // The normalization kernel stores the result in a permuted output tensor softmax_kernel->configure(tmp_input->info(), _impl->max.info(), _impl->output_permuted.info(), beta, _impl->tmp.info()); _impl->input_permuted.allocator()->allocate(); // Re-permute the permuted output into the requested (4D) output permute_output->configure(_impl->output_permuted.info(), output->info(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis)); // Allocate the intermediate permuted tensors _impl->output_permuted.allocator()->allocate(); } else { softmax_kernel->configure(tmp_input->info(), _impl->max.info(), output->info(), beta, _impl->tmp.info()); } // Allocate intermediate buffers _impl->max.allocator()->allocate(); _impl->tmp.allocator()->allocate(); } template Status NESoftmaxLayerGeneric::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, int32_t axis) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuSoftmaxGeneric::validate(input, output, beta, axis)); return Status{}; } template void NESoftmaxLayerGeneric::run() { MemoryGroupResourceScope scope_mg(_memory_group); ITensorPack pack; pack.add_tensor(TensorType::ACL_SRC, _impl->src); pack.add_tensor(TensorType::ACL_DST, _impl->dst); pack.add_tensor(TensorType::ACL_INT_0, &_impl->tmp); pack.add_tensor(TensorType::ACL_INT_1, &_impl->max); pack.add_tensor(TensorType::ACL_INT_2, &_impl->input_permuted); pack.add_tensor(TensorType::ACL_INT_3, &_impl->output_permuted); _impl->op->run(pack); } template class NESoftmaxLayerGeneric; template class NESoftmaxLayerGeneric; } // namespace arm_compute