/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "src/core/NEON/kernels/NEFillBorderKernel.h" #include "src/core/NEON/kernels/NESoftmaxLayerKernel.h" #include "src/core/NEON/kernels/NESoftmaxLayerKernel.h" #include "src/core/helpers/SoftmaxHelpers.h" #include "support/MemorySupport.h" namespace arm_compute { template NESoftmaxLayerGeneric::~NESoftmaxLayerGeneric() = default; template NESoftmaxLayerGeneric::NESoftmaxLayerGeneric(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _fill_border_kernel(), _max(), _tmp(), _input_permuted(), _output_permuted(), _needs_permute(false) { } template void NESoftmaxLayerGeneric::configure(ITensor *input, ITensor *output, float beta, int32_t axis) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayerGeneric::validate(input->info(), output->info(), beta, axis)); const unsigned int actual_axis = static_cast(wrap_around(axis, static_cast(input->info()->num_dimensions()))); _needs_permute = actual_axis > 0; if(_needs_permute) { // Add to the memory manager _input_permuted _memory_group.manage(&_input_permuted); _permute_input.configure(input, &_input_permuted, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis)); } // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case) // or it is the original input case (2D case) ITensor *tmp_input = (_needs_permute ? &_input_permuted : input); // Create intermediate tensors shapes const TensorInfo input_info = tmp_input->info()->clone()->reset_padding().set_is_resizable(true); DataType tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->info()->data_type()) ? DataType::F32 : tmp_input->info()->data_type(); TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type)); // Init intermediate tensors TensorShape max_sum_shape = tmp_input->info()->tensor_shape(); max_sum_shape.set(0, 1); _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape)); _tmp.allocator()->init(tensor_info_tmp); // Manage intermediate buffers _memory_group.manage(&_max); _memory_group.manage(&_tmp); // Configure kernels _max_kernel = arm_compute::support::cpp14::make_unique(); _softmax_kernel = arm_compute::support::cpp14::make_unique>(); _max_kernel->configure(tmp_input, &_max); if(_needs_permute) { // Add to the memory manager _output_permuted _memory_group.manage(&_output_permuted); // The normalization kernel stores the result in a permuted output tensor _softmax_kernel->configure(tmp_input, &_max, &_output_permuted, beta, &_tmp); _input_permuted.allocator()->allocate(); // Re-permute the permuted output into the requested (4D) output _permute_output.configure(&_output_permuted, output, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis)); // Allocate the intermediate permuted tensors _output_permuted.allocator()->allocate(); } else { // Softmax 2D case _fill_border_kernel = arm_compute::support::cpp14::make_unique(); _fill_border_kernel->configure(tmp_input, _max_kernel->border_size(), BorderMode::REPLICATE); _softmax_kernel->configure(tmp_input, &_max, output, beta, &_tmp); } // Allocate intermediate buffers _max.allocator()->allocate(); _tmp.allocator()->allocate(); } template Status NESoftmaxLayerGeneric::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, int32_t axis) { // Perform validation step ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported"); ARM_COMPUTE_UNUSED(beta); ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast(-input->num_dimensions()) || static_cast(input->num_dimensions()) <= axis); // Create intermediate tensor info DataType tmp_data_type = input->data_type(); const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true)); TensorShape max_sum_shape = input->tensor_shape(); max_sum_shape.set(0, 1); const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true)); const TensorInfo dont_care; const unsigned int actual_axis = static_cast(wrap_around(axis, static_cast(input->num_dimensions()))); const bool needs_permute = actual_axis > 0; if(needs_permute) { const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis); const TensorShape permuted_shape = misc::shape_calculator::compute_permutation_output_shape(*input, permutation_vector); TensorInfo input_permuted(input->clone()->set_tensor_shape(permuted_shape)); ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(input, &input_permuted, permutation_vector)); TensorInfo output_permuted(output->clone()->set_tensor_shape(permuted_shape)); ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(&output_permuted, output, permutation_vector)); } ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum)); ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DSoftmaxKernel::validate(&tensor_info_tmp, &tensor_info_max_sum, output, beta, &dont_care)); return Status{}; } template void NESoftmaxLayerGeneric::run() { MemoryGroupResourceScope scope_mg(_memory_group); if(_needs_permute) { _permute_input.run(); } else { NEScheduler::get().schedule(_fill_border_kernel.get(), Window::DimY); } NEScheduler::get().schedule(_max_kernel.get(), Window::DimY); NEScheduler::get().schedule(_softmax_kernel.get(), Window::DimY); if(_needs_permute) { _permute_output.run(); } } template class NESoftmaxLayerGeneric; template class NESoftmaxLayerGeneric; } // namespace arm_compute