/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEReduceMean.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" namespace arm_compute { namespace { } // namespace NEReduceMean::NEReduceMean(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _reduction_kernels(), _reduced_outs(), _reshape(), _reduction_ops(), _keep_dims() { } Status validate_config(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output) { ARM_COMPUTE_UNUSED(keep_dims); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(reduction_axis.num_dimensions() < 1); ARM_COMPUTE_RETURN_ERROR_ON(reduction_axis.num_dimensions() > input->num_dimensions()); const unsigned int reduction_ops = reduction_axis.num_dimensions(); const int input_dims = input->num_dimensions(); Coordinates axis_local = reduction_axis; for(unsigned int i = 0; i < axis_local.num_dimensions(); ++i) { //axis: The dimensions to reduce. Must be in the range [-rank(input_tensor), rank(input_tensor)). ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] < (-static_cast(input->num_dimensions()))); ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] >= static_cast(input->num_dimensions())); } if(output->tensor_shape().total_size() != 0) { // Only validate if not using auto_init for the output tensor TensorShape out_shape = input->tensor_shape(); // Validate output_shape only if not using auto_init convert_negative_axis(axis_local, input_dims); std::sort(axis_local.begin(), axis_local.begin() + reduction_ops); for(unsigned int i = 0; i < reduction_ops; ++i) { ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] > 3); ARM_COMPUTE_RETURN_ERROR_ON(static_cast(axis_local[i]) > input->num_dimensions() - 1); if(output->total_size() > 0 && keep_dims) { ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(axis_local[i]) != 1); } if(keep_dims) { out_shape.set(axis_local[i], 1); } else { ARM_COMPUTE_RETURN_ERROR_ON(i > static_cast(axis_local[i])); const unsigned int remove_index = axis_local[i] - i; ARM_COMPUTE_RETURN_ERROR_ON(remove_index >= out_shape.num_dimensions()); out_shape.remove_dimension(remove_index); } } const TensorInfo out_info = input->clone()->set_tensor_shape(out_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &out_info); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output); } return Status{}; } Status NEReduceMean::validate(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output) { return validate_config(input, reduction_axis, keep_dims, output); } void NEReduceMean::configure(ITensor *input, const Coordinates &reduction_axis, bool keep_dims, ITensor *output) { // Perform validate step ARM_COMPUTE_ERROR_THROW_ON(NEReduceMean::validate(input->info(), reduction_axis, keep_dims, output->info())); // Output auto inizialitation if not yet initialized const TensorShape output_shape = arm_compute::misc::shape_calculator::calculate_reduce_mean_shape(input, reduction_axis, keep_dims); auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); _reduction_ops = reduction_axis.num_dimensions(); _reduction_kernels.resize(_reduction_ops); _reduced_outs.resize(_reduction_ops - (keep_dims ? 1 : 0)); _keep_dims = keep_dims; Coordinates axis_local = reduction_axis; const int input_dims = input->info()->num_dimensions(); convert_negative_axis(axis_local, input_dims); // Perform reduction for every axis for(int i = 0; i < _reduction_ops; ++i) { TensorShape out_shape = i == 0 ? input->info()->tensor_shape() : (&_reduced_outs[i - 1])->info()->tensor_shape(); out_shape.set(axis_local[i], 1); auto in = (i == 0) ? input : (&_reduced_outs[i - 1]); if(i == _reduction_ops - 1 && keep_dims) { _reduction_kernels[i].configure(in, output, axis_local[i], ReductionOperation::MEAN_SUM); } else { _reduced_outs[i].allocator()->init(TensorInfo(out_shape, input->info()->num_channels(), input->info()->data_type(), input->info()->quantization_info())); _memory_group.manage(&_reduced_outs[i]); _reduction_kernels[i].configure(in, &_reduced_outs[i], axis_local[i], ReductionOperation::MEAN_SUM); } } // Allocate intermediate tensors for(int i = 0; i < _reduction_ops - (keep_dims ? 1 : 0); ++i) { _reduced_outs[i].allocator()->allocate(); } // Configure reshape layer if we want to drop the dimensions if(!keep_dims) { TensorShape out_shape = input->info()->tensor_shape(); // We have to sort the reduction axis vectors in order for remove_dimension // to work properly std::sort(axis_local.begin(), axis_local.begin() + _reduction_ops); for(int i = 0; i < _reduction_ops; ++i) { out_shape.remove_dimension(axis_local[i] - i); } auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(out_shape)); _reshape.configure(&_reduced_outs[_reduction_ops - 1], output); } } void NEReduceMean::run() { MemoryGroupResourceScope scope_mg(_memory_group); for(auto &kernel : _reduction_kernels) { kernel.run(); } if(!_keep_dims) { _reshape.run(); } } } // namespace arm_compute