/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEHOGMultiDetection.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/Tensor.h" #include "support/ToolchainSupport.h" using namespace arm_compute; NEHOGMultiDetection::NEHOGMultiDetection(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _gradient_kernel(), _orient_bin_kernel(), _block_norm_kernel(), _hog_detect_kernel(), _non_maxima_kernel(), _hog_space(), _hog_norm_space(), _detection_windows(), _mag(), _phase(), _non_maxima_suppression(false), _num_orient_bin_kernel(0), _num_block_norm_kernel(0), _num_hog_detect_kernel(0) { } void NEHOGMultiDetection::configure(ITensor *input, const IMultiHOG *multi_hog, IDetectionWindowArray *detection_windows, const ISize2DArray *detection_window_strides, BorderMode border_mode, uint8_t constant_border_value, float threshold, bool non_maxima_suppression, float min_distance) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_INVALID_MULTI_HOG(multi_hog); ARM_COMPUTE_ERROR_ON(nullptr == detection_windows); ARM_COMPUTE_ERROR_ON(detection_window_strides->num_values() != multi_hog->num_models()); const size_t width = input->info()->dimension(Window::DimX); const size_t height = input->info()->dimension(Window::DimY); const TensorShape &shape_img = input->info()->tensor_shape(); const size_t num_models = multi_hog->num_models(); PhaseType phase_type = multi_hog->model(0)->info()->phase_type(); size_t prev_num_bins = multi_hog->model(0)->info()->num_bins(); Size2D prev_cell_size = multi_hog->model(0)->info()->cell_size(); Size2D prev_block_size = multi_hog->model(0)->info()->block_size(); Size2D prev_block_stride = multi_hog->model(0)->info()->block_stride(); /* Check if NEHOGOrientationBinningKernel and NEHOGBlockNormalizationKernel kernels can be skipped for a specific HOG data-object * * 1) NEHOGOrientationBinningKernel and NEHOGBlockNormalizationKernel are skipped if the cell size and the number of bins don't change. * Since "multi_hog" is sorted,it is enough to check the HOG descriptors at level "ith" and level "(i-1)th * 2) NEHOGBlockNormalizationKernel is skipped if the cell size, the number of bins and block size do not change. * Since "multi_hog" is sorted,it is enough to check the HOG descriptors at level "ith" and level "(i-1)th * * @note Since the orientation binning and block normalization kernels can be skipped, we need to keep track of the input to process for each kernel * with "input_orient_bin", "input_hog_detect" and "input_block_norm" */ std::vector input_orient_bin; std::vector input_hog_detect; std::vector> input_block_norm; input_orient_bin.push_back(0); input_hog_detect.push_back(0); input_block_norm.emplace_back(0, 0); for(size_t i = 1; i < num_models; ++i) { size_t cur_num_bins = multi_hog->model(i)->info()->num_bins(); Size2D cur_cell_size = multi_hog->model(i)->info()->cell_size(); Size2D cur_block_size = multi_hog->model(i)->info()->block_size(); Size2D cur_block_stride = multi_hog->model(i)->info()->block_stride(); if((cur_num_bins != prev_num_bins) || (cur_cell_size.width != prev_cell_size.width) || (cur_cell_size.height != prev_cell_size.height)) { prev_num_bins = cur_num_bins; prev_cell_size = cur_cell_size; prev_block_size = cur_block_size; prev_block_stride = cur_block_stride; // Compute orientation binning and block normalization kernels. Update input to process input_orient_bin.push_back(i); input_block_norm.emplace_back(i, input_orient_bin.size() - 1); } else if((cur_block_size.width != prev_block_size.width) || (cur_block_size.height != prev_block_size.height) || (cur_block_stride.width != prev_block_stride.width) || (cur_block_stride.height != prev_block_stride.height)) { prev_block_size = cur_block_size; prev_block_stride = cur_block_stride; // Compute block normalization kernel. Update input to process input_block_norm.emplace_back(i, input_orient_bin.size() - 1); } // Update input to process for hog detector kernel input_hog_detect.push_back(input_block_norm.size() - 1); } _detection_windows = detection_windows; _non_maxima_suppression = non_maxima_suppression; _num_orient_bin_kernel = input_orient_bin.size(); // Number of NEHOGOrientationBinningKernel kernels to compute _num_block_norm_kernel = input_block_norm.size(); // Number of NEHOGBlockNormalizationKernel kernels to compute _num_hog_detect_kernel = input_hog_detect.size(); // Number of NEHOGDetector functions to compute _orient_bin_kernel.reserve(_num_orient_bin_kernel); _block_norm_kernel.reserve(_num_block_norm_kernel); _hog_detect_kernel.reserve(_num_hog_detect_kernel); _hog_space.reserve(_num_orient_bin_kernel); _hog_norm_space.reserve(_num_block_norm_kernel); _non_maxima_kernel = arm_compute::support::cpp14::make_unique(); // Allocate tensors for magnitude and phase TensorInfo info_mag(shape_img, Format::S16); _mag.allocator()->init(info_mag); TensorInfo info_phase(shape_img, Format::U8); _phase.allocator()->init(info_phase); // Manage intermediate buffers _memory_group.manage(&_mag); _memory_group.manage(&_phase); // Initialise gradient kernel _gradient_kernel.configure(input, &_mag, &_phase, phase_type, border_mode, constant_border_value); // Configure NETensor for the HOG space and orientation binning kernel for(size_t i = 0; i < _num_orient_bin_kernel; ++i) { const size_t idx_multi_hog = input_orient_bin[i]; // Get the corresponding cell size and number of bins const Size2D &cell = multi_hog->model(idx_multi_hog)->info()->cell_size(); const size_t num_bins = multi_hog->model(idx_multi_hog)->info()->num_bins(); // Calculate number of cells along the x and y directions for the hog_space const size_t num_cells_x = width / cell.width; const size_t num_cells_y = height / cell.height; // TensorShape of hog space TensorShape shape_hog_space = input->info()->tensor_shape(); shape_hog_space.set(Window::DimX, num_cells_x); shape_hog_space.set(Window::DimY, num_cells_y); // Allocate HOG space TensorInfo info_space(shape_hog_space, num_bins, DataType::F32); auto hog_space_tensor = support::cpp14::make_unique(); hog_space_tensor->allocator()->init(info_space); // Manage intermediate buffers _memory_group.manage(hog_space_tensor.get()); // Initialise orientation binning kernel auto orient_bin_kernel = support::cpp14::make_unique(); orient_bin_kernel->configure(&_mag, &_phase, hog_space_tensor.get(), multi_hog->model(idx_multi_hog)->info()); _orient_bin_kernel.emplace_back(std::move(orient_bin_kernel)); _hog_space.emplace_back(std::move(hog_space_tensor)); } // Allocate intermediate tensors _mag.allocator()->allocate(); _phase.allocator()->allocate(); // Configure NETensor for the normalized HOG space and block normalization kernel for(size_t i = 0; i < _num_block_norm_kernel; ++i) { const size_t idx_multi_hog = input_block_norm[i].first; const size_t idx_orient_bin = input_block_norm[i].second; // Allocate normalized HOG space TensorInfo tensor_info(*(multi_hog->model(idx_multi_hog)->info()), width, height); auto hog_norm_space_tensor = support::cpp14::make_unique(); hog_norm_space_tensor->allocator()->init(tensor_info); // Manage intermediate buffers _memory_group.manage(hog_norm_space_tensor.get()); // Initialize block normalization kernel auto block_norm_kernel = support::cpp14::make_unique(); block_norm_kernel->configure(_hog_space[idx_orient_bin].get(), hog_norm_space_tensor.get(), multi_hog->model(idx_multi_hog)->info()); _block_norm_kernel.emplace_back(std::move(block_norm_kernel)); _hog_norm_space.emplace_back(std::move(hog_norm_space_tensor)); } // Allocate intermediate tensors for(size_t i = 0; i < _num_orient_bin_kernel; ++i) { _hog_space[i].get()->allocator()->allocate(); } // Configure HOG detector kernel for(size_t i = 0; i < _num_hog_detect_kernel; ++i) { const size_t idx_block_norm = input_hog_detect[i]; auto hog_detect_kernel = support::cpp14::make_unique(); hog_detect_kernel->configure(_hog_norm_space[idx_block_norm].get(), multi_hog->model(i), detection_windows, detection_window_strides->at(i), threshold, i); _hog_detect_kernel.emplace_back(std::move(hog_detect_kernel)); } // Configure non maxima suppression kernel _non_maxima_kernel->configure(_detection_windows, min_distance); // Allocate intermediate tensors for(size_t i = 0; i < _num_block_norm_kernel; ++i) { _hog_norm_space[i]->allocator()->allocate(); } } void NEHOGMultiDetection::run() { ARM_COMPUTE_ERROR_ON_MSG(_detection_windows == nullptr, "Unconfigured function"); MemoryGroupResourceScope scope_mg(_memory_group); // Reset detection window _detection_windows->clear(); // Run gradient _gradient_kernel.run(); // Run orientation binning kernel for(auto &kernel : _orient_bin_kernel) { NEScheduler::get().schedule(kernel.get(), Window::DimY); } // Run block normalization kernel for(auto &kernel : _block_norm_kernel) { NEScheduler::get().schedule(kernel.get(), Window::DimY); } // Run HOG detector kernel for(auto &kernel : _hog_detect_kernel) { kernel->run(); } // Run non-maxima suppression kernel if enabled if(_non_maxima_suppression) { NEScheduler::get().schedule(_non_maxima_kernel.get(), Window::DimY); } }