/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h" #include "arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h" #include "arm_compute/core/NEON/kernels/NEGEMMTranspose1xWKernel.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/TensorAllocator.h" #include "support/ToolchainSupport.h" using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; NEGEMMLowpMatrixMultiplyCore::NEGEMMLowpMatrixMultiplyCore(std::shared_ptr memory_manager) : _memory_group(memory_manager), _asm_glue(memory_manager), _mm_kernel(nullptr), _mtx_a_reshape_kernel(nullptr), _mtx_b_reshape_kernel(nullptr), _mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(), _offset_contribution_kernel(), _vector_sum_col(), _vector_sum_row(), _tmp_a(), _tmp_b(), _original_b(nullptr), _a_offset(0), _b_offset(0), _run_vector_matrix_multiplication(false), _dot_product_path(false), _reshape_b_only_on_first_run(false), _is_prepared(false) { } void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b, ITensor *output, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output); ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), output->info(), gemm_info)); // Clear state _mtx_a_reshape_kernel = nullptr; _mtx_b_reshape_kernel = nullptr; // Set internal variables _a_offset = a->info()->quantization_info().offset; _b_offset = b->info()->quantization_info().offset; _run_vector_matrix_multiplication = a->info()->dimension(1) < 2; _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _is_prepared = false; _original_b = b; #ifdef __aarch64__ switch(a->info()->data_type()) { case DataType::QASYMM8: case DataType::U8: case DataType::S8: { _asm_glue.configure(a, b, output, 1.f, 0.f, _reshape_b_only_on_first_run); _dot_product_path = _asm_glue.is_configured(); break; } default: { ARM_COMPUTE_ERROR("Datatype not supported"); break; } } #endif /* __aarch64__ */ if(!_dot_product_path) { if(_run_vector_matrix_multiplication) { // Configure matrix multiply kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(a, b, output); _mm_kernel = std::move(k); } } else { // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ] TensorInfo info_a(compute_interleaved_shape(*a->info()), 1, a->info()->data_type()); // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ] TensorInfo info_b(compute_transpose1xW_shape(*b->info()), 1, b->info()->data_type()); _tmp_a.allocator()->init(info_a); _tmp_b.allocator()->init(info_b); _memory_group.manage(&_tmp_a); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_tmp_b); } // Configure interleave kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(a, &_tmp_a); _mtx_a_reshape_kernel = std::move(k); } // Configure transpose kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(b, &_tmp_b); _mtx_b_reshape_kernel = std::move(k); } // Configure matrix multiply kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(&_tmp_a, &_tmp_b, output); _mm_kernel = std::move(k); } } } // Initialize matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0) { TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32); _vector_sum_col.allocator()->init(info_vector_sum_col); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_vector_sum_col); } // Configure Matrix B reduction kernel _mtx_b_reduction_kernel.configure(b, &_vector_sum_col, a->info()->dimension(0), false); } // Initialize Matrix A reduction kernel only if _b_offset is not equal to 0 if(_b_offset != 0) { TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32); _vector_sum_row.allocator()->init(info_vector_sum_row); _memory_group.manage(&_vector_sum_row); // Configure matrix A reduction kernel _mtx_a_reduction_kernel.configure(a, &_vector_sum_row, a->info()->dimension(0), false); } // Configure offset contribution kernel _offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, a->info()->dimension(0), _a_offset, _b_offset); // Allocate tensors if(!_dot_product_path && !_run_vector_matrix_multiplication) { _tmp_a.allocator()->allocate(); if(!_reshape_b_only_on_first_run) { _tmp_b.allocator()->allocate(); } } if(_a_offset != 0 && !_reshape_b_only_on_first_run) { _vector_sum_col.allocator()->allocate(); } if(_b_offset != 0) { _vector_sum_row.allocator()->allocate(); } } Status NEGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output, const GEMMInfo &gemm_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b); ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(1) != (output)->dimension(1), "The output matrix must have the same number of rows as the matrix A"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((b)->dimension(0) != (output)->dimension(0), "The output matrix must have the same number of columns as the matrix B"); ARM_COMPUTE_UNUSED(gemm_info); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "NEGEMMLowpMatrixMultiplyCore cannot reinterpret the input tensor as 3D"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 1, "NEGEMMLowpMatrixMultiplyCore cannot reinterpret the output tensor as 3D"); int32_t a_offset = a->quantization_info().offset; int32_t b_offset = b->quantization_info().offset; bool run_vector_matrix_multiplication = a->dimension(1) < 2; if(!run_vector_matrix_multiplication) { // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ] TensorShape shape_tmp_a = a->tensor_shape(); shape_tmp_a.set(0, a->dimension(0) * 4); shape_tmp_a.set(1, std::ceil(a->dimension(1) / 4.f)); // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ] TensorShape shape_tmp_b = b->tensor_shape(); shape_tmp_b.set(0, b->dimension(1) * 16); shape_tmp_b.set(1, std::ceil(b->dimension(0) / 16.f)); TensorInfo info_a(shape_tmp_a, 1, a->data_type()); TensorInfo info_b(shape_tmp_b, 1, b->data_type()); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(a, &info_a)); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(b, &info_b)); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(&info_a, &info_b, output)); } else { ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(a, b, output)); } TensorInfo info_vector_sum_col, info_vector_sum_row; // Validate matrix B reduction kernel only if _a_offset is not equal to 0 if(a_offset != 0) { info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32); // Configure Matrix B reduction kernel ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col, a->dimension(0), false)); } // Validate Matrix A reduction kernel only if _b_offset is not equal to 0 if(b_offset != 0) { info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32); // Configure matrix A reduction kernel ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row, a->dimension(0), false)); } // Validate offset contribution kernel ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionKernel::validate(output, a_offset == 0 ? nullptr : &info_vector_sum_col, b_offset == 0 ? nullptr : &info_vector_sum_row, a_offset, b_offset)); return Status{}; } void NEGEMMLowpMatrixMultiplyCore::run() { prepare(); _memory_group.acquire(); // Reshape inputs if(_mtx_a_reshape_kernel) { NEScheduler::get().schedule(_mtx_a_reshape_kernel.get(), Window::DimY); } if(_mtx_b_reshape_kernel && !_reshape_b_only_on_first_run) { NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY); } // Run GEMM if(_asm_glue.is_configured()) { _asm_glue.run(); } else { NEScheduler::get().schedule(_mm_kernel.get(), Window::DimY); } // Run matrix A reduction kernel only if _b_offset is not equal to 0 if(_b_offset != 0) { NEScheduler::get().schedule(&_mtx_a_reduction_kernel, Window::DimX); } // Run matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0 && !_reshape_b_only_on_first_run) { NEScheduler::get().schedule(&_mtx_b_reduction_kernel, Window::DimX); } // Run offset contribution kernel NEScheduler::get().schedule(&_offset_contribution_kernel, Window::DimY); _memory_group.release(); } void NEGEMMLowpMatrixMultiplyCore::prepare() { if(!_is_prepared) { // Run assembly reshape if(_asm_glue.is_configured() && _reshape_b_only_on_first_run) { ARM_COMPUTE_ERROR_ON(!_original_b->is_used()); _asm_glue.prepare(); _original_b->mark_as_unused(); } // Run non-assembly reshape else if(_mtx_b_reshape_kernel && _reshape_b_only_on_first_run) { ARM_COMPUTE_ERROR_ON(!_original_b->is_used()); // Run reshape kernel and mark original weights tensor as unused _tmp_b.allocator()->allocate(); NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY); _original_b->mark_as_unused(); } // Run matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0 && _reshape_b_only_on_first_run) { _vector_sum_col.allocator()->allocate(); NEScheduler::get().schedule(&_mtx_b_reduction_kernel, Window::DimX); } _is_prepared = true; } }