/* Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEGEMMLowpAssemblyMatrixMultiplyCore.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/kernels/NEGEMMAssemblyBaseKernel.h" #include "arm_compute/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h" #include "arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h" #include "arm_compute/core/NEON/kernels/NEGEMMTranspose1xWKernel.h" #include "arm_compute/core/NEON/kernels/arm64/NEGEMMLowpAArch64A53Kernel.h" #include "arm_compute/core/NEON/kernels/arm64/NEGEMMLowpAArch64Kernel.h" #include "arm_compute/core/NEON/kernels/arm64/NEGEMMLowpAArch64V8P4Kernel.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/TensorAllocator.h" #include "support/ToolchainSupport.h" namespace arm_compute { #include "arm_compute/core/NEON/kernels/assembly/gemm_interleaved.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_gemm_s16_12x8.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_gemm_s8_12x8.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_gemm_s8_4x4.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_gemm_u16_12x8.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_gemm_u8_4x4.hpp" } // namespace arm_compute using namespace arm_compute; NEGEMMLowpAssemblyMatrixMultiplyCore::NEGEMMLowpAssemblyMatrixMultiplyCore(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _mm_kernel(nullptr), _mtx_a_reshape_kernel(nullptr), _mtx_b_reshape_kernel(nullptr), _tmp_a(), _tmp_b(), _workspace() { } void NEGEMMLowpAssemblyMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b, ITensor *output) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::U8, DataType::S8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U32, DataType::S32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b); ARM_COMPUTE_ERROR_ON_MSG((a)->info()->dimension(0) != (b)->info()->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B"); ARM_COMPUTE_ERROR_ON_MSG((a)->info()->dimension(1) != (output)->info()->dimension(1), "The output matrix must have the same number of rows as the matrix A"); ARM_COMPUTE_ERROR_ON_MSG((b)->info()->dimension(0) != (output)->info()->dimension(0), "The output matrix must have the same number of columns as the matrix B"); #ifdef __aarch64__ const int M = output->info()->tensor_shape().y(); const int N = output->info()->tensor_shape().x(); const int K = a->info()->tensor_shape().x(); constexpr size_t workspace_alignment = 4096; const struct CPUInfo ci = NEScheduler::get().cpu_info(); #endif /* __aarch64__ */ #ifdef ARM_COMPUTE_AARCH64_V8_2 if(ci.CPU == CPUTarget::A75_DOT) { // Configure matrix multiply kernel GemmInterleaved gemm(&ci, M, N, K, false, false); _workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + workspace_alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8)); _memory_group.manage(&_workspace); // Configure matrix multiplication kernel auto k = arm_compute::support::cpp14::make_unique(); k->configure(a, b, output, &_workspace, 1.f, 1.f); _mm_kernel = std::move(k); _workspace.allocator()->allocate(); } else if(ci.CPU == CPUTarget::A55_DOT) { ARM_COMPUTE_ERROR_ON("WIP"); } else #elif defined(ARM_COMPUTE_AARCH64_V8A) if(ci.CPU == CPUTarget::A53) { switch(a->info()->data_type()) { case DataType::S8: { // Configure matrix multiply kernel GemmInterleaved gemm(&ci, M, N, K, false, false); _workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + workspace_alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8)); } break; case DataType::U8: { // Configure matrix multiply kernel GemmInterleaved gemm(&ci, M, N, K, false, false); _workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + workspace_alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8)); } break; default: ARM_COMPUTE_ERROR("Datatype not supported"); } _memory_group.manage(&_workspace); // Configure matrix multiplication kernel auto k = arm_compute::support::cpp14::make_unique(); k->configure(a, b, output, &_workspace, 1.f, 1.f); _mm_kernel = std::move(k); _workspace.allocator()->allocate(); } else if(1) // Generic v8a kernel { switch(a->info()->data_type()) { case DataType::S8: { // Configure matrix multiply kernel GemmInterleaved gemm(&ci, M, N, K, false, false); _workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + workspace_alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8)); } break; case DataType::U8: { // Configure matrix multiply kernel GemmInterleaved gemm(&ci, M, N, K, false, false); _workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + workspace_alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8)); } break; default: ARM_COMPUTE_ERROR("Datatype not supported"); } _memory_group.manage(&_workspace); // Configure matrix multiplication kernel auto k = arm_compute::support::cpp14::make_unique(); k->configure(a, b, output, &_workspace, 1.f, 1.f); _mm_kernel = std::move(k); _workspace.allocator()->allocate(); } else #endif /* ARM_COMPUTE_AARCH64_V8_2 */ { // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ] TensorShape shape_tmp_a = a->info()->tensor_shape(); shape_tmp_a.set(0, a->info()->dimension(0) * 4); shape_tmp_a.set(1, std::ceil(a->info()->dimension(1) / 4.f)); // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ] TensorShape shape_tmp_b = b->info()->tensor_shape(); shape_tmp_b.set(0, b->info()->dimension(1) * 16); shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / 16.f)); TensorInfo info_a(shape_tmp_a, 1, a->info()->data_type()); TensorInfo info_b(shape_tmp_b, 1, b->info()->data_type()); _tmp_a.allocator()->init(info_a); _tmp_b.allocator()->init(info_b); _memory_group.manage(&_tmp_a); _memory_group.manage(&_tmp_b); // Configure interleave kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(a, &_tmp_a); _mtx_a_reshape_kernel = std::move(k); } // Configure transpose kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(b, &_tmp_b); _mtx_b_reshape_kernel = std::move(k); } // Configure matrix multiply kernel { auto k = arm_compute::support::cpp14::make_unique(); k->configure(&_tmp_a, &_tmp_b, output); _mm_kernel = std::move(k); } // Allocate tensors _tmp_a.allocator()->allocate(); _tmp_b.allocator()->allocate(); } } void NEGEMMLowpAssemblyMatrixMultiplyCore::run() { _memory_group.acquire(); if(_mtx_a_reshape_kernel) { NEScheduler::get().schedule(_mtx_a_reshape_kernel.get(), Window::DimY); } if(_mtx_b_reshape_kernel) { NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY); } NEScheduler::get().schedule(_mm_kernel.get(), Window::DimY); _memory_group.release(); }