/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEGEMMConvolutionLayer.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "support/ToolchainSupport.h" #include #include #include using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights() : _weights_reshape_kernel() { } void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output); ARM_COMPUTE_ERROR_THROW_ON(NEConvolutionLayerReshapeWeights::validate(weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info())); const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type()); const ITensor *biases_to_use = (append_biases) ? biases : nullptr; _weights_reshape_kernel.configure(weights, biases_to_use, output); output->info()->set_quantization_info(weights->info()->quantization_info()); } Status NEConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); if(biases != nullptr) { const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type())); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output); NEWeightsReshapeKernel::validate(weights, biases, output); } return Status{}; } void NEConvolutionLayerReshapeWeights::run() { NEScheduler::get().schedule(&_weights_reshape_kernel, 3); } NEGEMMConvolutionLayer::NEGEMMConvolutionLayer(const std::shared_ptr &memory_manager) : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(), _add_bias_kernel(), _reshape_layer(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _tmp_output(), _data_layout(DataLayout::NCHW), _append_bias(false), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_activationlayer_enabled(false), _is_prepared(false) { } void NEGEMMConvolutionLayer::configure_mm(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act_info, int gemm_3d_depth) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights); ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), biases == nullptr ? nullptr : biases->info(), output == nullptr ? nullptr : output->info(), act_info, gemm_3d_depth, _skip_im2col)); const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */); if(_is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->info()->quantization_info(); const QuantizationInfo weights_quantization_info = weights->info()->quantization_info(); input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input_quantization_info : output->info()->quantization_info(); float multiplier = input_quantization_info.scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier; int output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); // Merge activation with output stage int min_activation = 0; int max_activation = 0; const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU }; if(_is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0) { const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP); const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP); min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int; max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int; _is_activationlayer_enabled = false; } GEMMLowpOutputStageInfo output_info; output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; output_info.gemmlowp_offset = output_quant_info.offset; output_info.gemmlowp_multiplier = output_multiplier; output_info.gemmlowp_shift = output_shift; output_info.gemmlowp_min_bound = min_activation; output_info.gemmlowp_max_bound = max_activation; _mm_gemmlowp.configure(input, weights, biases, output, GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info)); // Revert back QuantizatioInfo as input and weights could be used in other convolution layers input->info()->set_quantization_info(input_quantization_info); weights->info()->set_quantization_info(weights_quantization_info); } else { // Configure matrix multiply function _mm_gemm.configure(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info); } } Status NEGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col) { const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool is_activation_enabled = act_info.enabled(); const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */); if(is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->quantization_info(); const QuantizationInfo weights_quantization_info = weights->quantization_info(); std::unique_ptr input_qa = input->clone(); std::unique_ptr weights_qa = weights->clone(); input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); const QuantizationInfo output_quant_info = (output->total_size() == 0) ? input_quantization_info : output->quantization_info(); float multiplier = input_quantization_info.scale * weights->quantization_info().scale / output_quant_info.scale; int output_multiplier; int output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); // Merge activation with output stage int min_activation = 0; int max_activation = 0; const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU }; if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0) { const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP); const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP); min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int; max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int; } GEMMLowpOutputStageInfo output_info; output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; output_info.gemmlowp_offset = output_quant_info.offset; output_info.gemmlowp_multiplier = output_multiplier; output_info.gemmlowp_shift = output_shift; output_info.gemmlowp_min_bound = min_activation; output_info.gemmlowp_max_bound = max_activation; // Perform validation step on GEMMLowp return NEGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, output, GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false, output_info)); } else { // Perform validation step on Matrix multiply function return NEGEMM::validate(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info); } } Status NEGEMMConvolutionLayer::validate_gemm3d(const ITensorInfo *input_info, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col) { const DataType data_type = input_info->data_type(); const unsigned int mult_y = skip_im2col ? 1U : gemm_3d_depth; const unsigned int mult_z = skip_im2col ? gemm_3d_depth : 1U; // Set dummy tensor shapes for the validation const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type, input_info->quantization_info()); const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type); const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type, input_info->quantization_info()); return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, gemm_3d_depth, skip_im2col); } void NEGEMMConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_UNUSED(num_groups); ARM_COMPUTE_ERROR_THROW_ON(NEGEMMConvolutionLayer::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), conv_info, weights_info, dilation, act_info, num_groups)); const DataType data_type = input->info()->data_type(); const DataLayout data_layout = input->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); const unsigned int kernel_width = weights->info()->dimension(idx_width); const unsigned int kernel_height = weights->info()->dimension(idx_height); _is_prepared = weights_info.retain_internal_weights(); _original_weights = weights; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _data_layout = data_layout; _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); _append_bias = (biases != nullptr) && (!_is_quantized); _is_activationlayer_enabled = act_info.enabled(); const ITensor *gemm_input_to_use = input; ITensor *gemm_output_to_use = output; // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(idx_width), input->info()->dimension(idx_height), kernel_width, kernel_height, conv_info, dilation); // Check if GEMM3D is supported if(data_layout == DataLayout::NHWC) { _skip_col2im = bool(validate_gemm3d(input->info(), act_info, conv_h, true)); // If not supported, we need to perform im2col and col2im (or reshape layer) if(!_skip_col2im) { _skip_im2col = false; } } else { _skip_col2im = false; } const ITensor *biases_to_use = (_append_bias && !_skip_im2col) ? biases : nullptr; // Get parameters from conv_info unsigned int stride_x = 0; unsigned int stride_y = 0; std::tie(stride_x, stride_y) = conv_info.stride(); unsigned int mat_weights_cols = weights->info()->dimension(idx_kernels); // _weights_reshaped will be auto configured in the kernel. // Just append biases and do not transpose 1xW as it will be reshaped in NEGEMM _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped); // Create tensor to store im2col reshaped inputs if(!_skip_im2col) { _memory_group.manage(&_im2col_output); // Configure _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, _append_bias, dilation); // Update GEMM input gemm_input_to_use = &_im2col_output; } else if(_append_bias) { // Configure add bias kernel _add_bias_kernel.configure(output, biases, output, ConvertPolicy::SATURATE); } // Create temporary GEMM output tensor in case we cannot skip col2im if(!_skip_col2im) { TensorShape shape_gemm; // Calculate GEMM output shape shape_gemm = _im2col_output.info()->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, conv_w * conv_h); // FIXME: input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo info_gemm(shape_gemm, 1, data_type); info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout()); _gemm_output.allocator()->init(info_gemm); _memory_group.manage(&_gemm_output); // Update GEMM output gemm_output_to_use = &_gemm_output; } // Configure GEMM // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0; configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, gemm_3d_depth); if(!_skip_im2col) { _im2col_output.allocator()->allocate(); } if(!_skip_col2im) { if(_data_layout == DataLayout::NCHW) { // Configure col2im _col2im_kernel.configure(gemm_output_to_use, output, Size2D(conv_w, conv_h)); } else { // Configure reshape layer _reshape_layer.configure(gemm_output_to_use, output); } } if(_is_quantized && !_skip_col2im) { _tmp_output.allocator()->allocate(); } if(!_skip_col2im || _is_quantized) { _gemm_output.allocator()->allocate(); } ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h), "Output shape does not match the expected one"); // Configure Activation Layer if(_is_activationlayer_enabled) { _activationlayer_function.configure(output, nullptr, act_info); } ARM_COMPUTE_UNUSED(weights_info); } Status NEGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights); ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported on NEON"); const DataLayout data_layout = input->data_layout(); const DataType data_type = input->data_type(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); const unsigned int kernel_width = weights->dimension(idx_width); const unsigned int kernel_height = weights->dimension(idx_height); TensorInfo im2col_reshaped_info{}; TensorInfo info_gemm{}; TensorInfo tmp_info{}; TensorInfo weights_reshaped_info{}; const ITensorInfo *gemm_input_to_use = input; const ITensorInfo *gemm_output_to_use = output; const ITensorInfo *weights_to_use = weights; const bool is_quantized = is_data_type_quantized_asymmetric(data_type); const bool append_bias = (biases != nullptr) && (!is_quantized); bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); bool is_activation_enabled = act_info.enabled(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(idx_width), input->dimension(idx_height), kernel_width, kernel_height, conv_info, dilation); // Check if GEMM3D is supported bool skip_col2im = false; if(data_layout == DataLayout::NHWC) { skip_col2im = bool(validate_gemm3d(input, act_info, conv_h, true)); // If not supported, we need to perform im2col and col2im (or reshape layer) if(!skip_col2im) { skip_im2col = false; } } if(skip_col2im) { // If not supported, we need to perform im2col and col2im (or reshape layer) if(!bool(validate_gemm3d(input, act_info, conv_h, skip_im2col))) { skip_im2col = false; skip_col2im = false; } } const unsigned bias_element = (append_bias && !skip_im2col) ? 1 : 0; const ITensorInfo *biases_to_use = (append_bias && !skip_im2col) ? biases : nullptr; ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != input->dimension(idx_channel)); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); // Validate biases if(biases != nullptr) { if(is_quantized) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); } ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } if(act_info.enabled()) { ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a()); } unsigned int mat_weights_cols = weights->dimension(idx_kernels); unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel) + bias_element; // Output tensor auto inizialization if not yet initialized ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayerReshapeWeights::validate(weights, biases_to_use, nullptr)); weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, (append_bias && !skip_im2col)), 1, data_type); weights_to_use = &weights_reshaped_info; if(!skip_im2col) { // Create tensor info for im2col reshaped inputs // For NEON the batch size is on the fourth dimension // TODO (giaiod01): Auto-initialize the output shape of im2col COMPMID-1482 TensorShape shape_im2col = input->tensor_shape(); shape_im2col.set(0, mat_weights_rows); shape_im2col.set(1, conv_w * conv_h); shape_im2col.set(2, 1); im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type); im2col_reshaped_info.set_quantization_info(input->quantization_info()); ARM_COMPUTE_RETURN_ON_ERROR(NEIm2ColKernel::validate(input, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation)); gemm_input_to_use = &im2col_reshaped_info; } else if(append_bias) { // Validate add bias kernel ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(output, biases, output, ConvertPolicy::SATURATE)); } // Create temporary GEMM output tensor in case we cannot skip col2im if(!skip_col2im) { TensorShape shape_gemm = gemm_input_to_use->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, conv_w * conv_h); info_gemm = TensorInfo(shape_gemm, 1, data_type); } else { info_gemm = TensorInfo(output->tensor_shape(), 1, data_type); } info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout()); gemm_output_to_use = &info_gemm; ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info, skip_col2im ? conv_h : 0, skip_im2col)); // Validate Col2Im/ReshapeLayer if(!skip_col2im && (data_layout == DataLayout::NCHW)) { ARM_COMPUTE_RETURN_ON_ERROR(NECol2ImKernel::validate(gemm_output_to_use, output, Size2D(conv_w, conv_h))); } //Validate Activation Layer if(is_activation_enabled) { ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info)); } return Status{}; } void NEGEMMConvolutionLayer::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(!_skip_im2col) { // Run input reshaping unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); NEScheduler::get().schedule(&_im2col_kernel, y_dim); } // Runs NEGEMM or NEGEMMLowpMatrixMultiplyCore functions if(_is_quantized) { // Run gemmlowp _mm_gemmlowp.run(); } else { // Run gemm _mm_gemm.run(); } if(_skip_im2col && _append_bias) { NEScheduler::get().schedule(&_add_bias_kernel, Window::DimY); } // Reshape output matrix if(!_skip_col2im) { if(_data_layout == DataLayout::NCHW) { NEScheduler::get().schedule(&_col2im_kernel, Window::DimY); } else { _reshape_layer.run(); } } if(_is_activationlayer_enabled) { _activationlayer_function.run(); } } void NEGEMMConvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights reshaping and mark original weights tensor as unused _weights_reshaped.allocator()->allocate(); _reshape_weights.run(); _original_weights->mark_as_unused(); // Prepare GEMM _is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare(); if(!_weights_reshaped.is_used()) { _weights_reshaped.allocator()->free(); } _is_prepared = true; } }