/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEGEMMConv2d.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "src/runtime/NEON/functions/NEGEMMAssemblyDispatch.h" #include namespace arm_compute { namespace { GEMMLowpOutputStageInfo calculate_output_stage_metadata(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const ActivationLayerInfo &act) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo iqinfo = input->quantization_info(); const QuantizationInfo wqinfo = weights->quantization_info(); const QuantizationInfo oqinfo = (output->total_size() == 0) ? iqinfo : output->quantization_info(); const UniformQuantizationInfo uoqinfo = oqinfo.uniform(); const DataType data_type = input->data_type(); // Merge activation with output stage const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU }; PixelValue type_min{}; PixelValue type_max{}; std::tie(type_min, type_max) = get_min_max(data_type); int32_t min_activation = type_min.get(); int32_t max_activation = type_max.get(); if(supported_acts.count(act.activation()) != 0) { std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act, data_type, uoqinfo); } GEMMLowpOutputStageInfo os_info; os_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; os_info.gemmlowp_offset = uoqinfo.offset; os_info.gemmlowp_min_bound = min_activation; os_info.gemmlowp_max_bound = max_activation; os_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL); quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, os_info); return os_info; } AsmGemmInfo init_assembly_metadata(const Conv2dInfo &info, bool is_indirect) { AsmGemmInfo asm_info; asm_info.method = is_indirect ? AsmConvMethod::Indirect : AsmConvMethod::Conv; asm_info.ps_info = info.conv_info; asm_info.activation_info = info.act_info; asm_info.depth_output_gemm3d = true; asm_info.reinterpret_input_as_3d = true; asm_info.padding_top = info.conv_info.pad_top(); asm_info.padding_left = info.conv_info.pad_left(); asm_info.padding_value = 0.f; asm_info.negated_offsets = false; return asm_info; } } // namespace NEGEMMConv2d::NEGEMMConv2d(const std::shared_ptr &memory_manager) : _gemm_asm_func(std::make_unique(memory_manager)), _activation_func(), _weights_permute_func(), _original_weights(nullptr), _permuted_weights(), _is_prepared(false), _run_activation(false) { } NEGEMMConv2d::~NEGEMMConv2d() = default; void NEGEMMConv2d::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const Conv2dInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(NEGEMMConv2d::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), info)); _original_weights = weights; _weights_permute_func.configure(weights, &_permuted_weights, PermutationVector{ 3, 0, 1, 2 }); // Configure assembly dispatch AsmGemmInfo asm_info = init_assembly_metadata(info, false); if(is_data_type_quantized(input->info()->data_type())) { asm_info.output_stage = calculate_output_stage_metadata(input->info(), weights->info(), output->info(), info.act_info); } _gemm_asm_func->configure(input, &_permuted_weights, biases, output, asm_info); // Configure activation if(info.act_info.enabled() && !_gemm_asm_func->is_activation_supported(info.act_info)) { _activation_func.configure(output, nullptr, info.act_info); _run_activation = true; } } Status NEGEMMConv2d::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const Conv2dInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::BFLOAT16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.num_groups > 1, "Grouping (num_groups != 1) is not supported on Neon"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_layout() != DataLayout::NHWC, "Data layout supported is NHWC"); const DataType data_type = input->data_type(); const TensorShape i_shape = input->tensor_shape(); const TensorShape w_shape = weights->tensor_shape(); ARM_COMPUTE_RETURN_ERROR_ON(w_shape[0] != i_shape[0]); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); // Validate biases if(biases != nullptr) { if(is_data_type_quantized_asymmetric(data_type)) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else if(data_type == DataType::BFLOAT16) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); } ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } AsmGemmInfo asm_info = init_assembly_metadata(info, false); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMAssemblyDispatch::validate(input, weights, biases, output, asm_info)); return Status{}; } void NEGEMMConv2d::run() { prepare(); _gemm_asm_func->run(); if(_run_activation) { _activation_func.run(); } } void NEGEMMConv2d::prepare() { if(!_is_prepared) { _permuted_weights.allocator()->allocate(); _weights_permute_func.run(); _original_weights->mark_as_unused(); _is_prepared = true; } } } // namespace arm_compute