/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEGEMM.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/kernels/arm32/NEGEMMAArch32Kernel.h" #include "arm_compute/core/NEON/kernels/arm64/NEGEMMAArch64Kernel.h" #include "arm_compute/core/NEON/kernels/arm64/NEHGEMMAArch64FP16Kernel.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/TensorAllocator.h" #include "support/ToolchainSupport.h" namespace arm_compute { #include "arm_compute/core/NEON/kernels/assembly/gemm_interleaved.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a32_sgemm_8x6.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_hgemm_24x8.hpp" #include "arm_compute/core/NEON/kernels/assembly/kernels/a64_sgemm_12x8.hpp" } // namespace arm_compute #include namespace arm_compute { NEGEMM::NEGEMM(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _mm_optimised_kernel(nullptr), _ma_kernel(), _tmp_a(), _tmp_b(), _workspace(), _run_vector_matrix_multiplication(false), _run_addition(false), _is_first_run(true), _reshape_b_only_on_first_run(false) { } void NEGEMM::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F32, DataType::F16, DataType::QS8, DataType::QS16); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, d); ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(0) != b->info()->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B"); ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); if(c != nullptr) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(c, 1, DataType::F32, DataType::F16, DataType::QS8, DataType::QS16); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, c); ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A"); ARM_COMPUTE_ERROR_ON_MSG(b->info()->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix B"); ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(0) != d->info()->dimension(0), "The C matrix must have the same number of rows as the output matrix"); ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(1) != d->info()->dimension(1), "The C matrix must have the same number of columns as the output matrix"); } // Check if we need to reshape the matrix B only on the first run _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _run_vector_matrix_multiplication = a->info()->dimension(1) < 2; // Check if the first input tensor is a vector. // If so, all the kernels for reshaping the tensors can be skipped if(_run_vector_matrix_multiplication) { // Configure the matrix multiply kernel _mm_kernel.configure(a, b, d, alpha); // Configure matrix addition kernel if(beta != 0 && c != nullptr) { _ma_kernel.configure(c, d, beta); _run_addition = true; } } else { #if defined(__arm__) if(NEScheduler::get().cpu_info().CPU == CPUTarget::ARMV7 && a->info()->data_type() == DataType::F32 && (c == nullptr || beta == 0.f)) { _mm_optimised_kernel = support::cpp14::make_unique(); } #elif defined(__aarch64__) if(NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV8 && a->info()->data_type() == DataType::F32 && (c == nullptr || beta == 0.f)) { _mm_optimised_kernel = support::cpp14::make_unique(); } else if(a->info()->data_type() == DataType::F16 && (c == nullptr || beta == 0.f)) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC _mm_optimised_kernel = support::cpp14::make_unique(); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_ERROR("Recompile the library with arch=arm64-v8.2-a to enable support for FP16."); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } #endif /* defined(__arm__) || defined(__aarch64__) */ #if defined(__arm__) || defined(__aarch64__) if(_mm_optimised_kernel != nullptr) { struct CPUInfo ci = NEScheduler::get().cpu_info(); const int M = d->info()->tensor_shape().y(); const int N = d->info()->tensor_shape().x(); const int K = a->info()->tensor_shape().x(); size_t workbench_size = 0; #if defined(__arm__) workbench_size = GemmInterleaved(&ci, M, N, K, false, false).get_working_size(); #elif defined(__aarch64__) if(a->info()->data_type() == DataType::F32) { workbench_size = GemmInterleaved(&ci, M, N, K, false, false).get_working_size(); } else if(a->info()->data_type() == DataType::F16) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC workbench_size = GemmInterleaved(&ci, M, N, K, false, false).get_working_size(); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_ERROR("Recompile the library with arch=arm64-v8.2-a to enable support for FP16."); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } #endif /* defined(__arm__) || defined(__aarch64__) */ constexpr size_t alignment = 4096; ARM_COMPUTE_ERROR_ON_MSG(workbench_size == 0, "size cannot be 0"); _workspace.allocator()->init(TensorInfo(TensorShape{ (workbench_size + alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::S8)); _memory_group.manage(&_workspace); // Configure matrix multiplication kernel _mm_optimised_kernel->configure(a, b, d, &_workspace, alpha, 0.f, false /* is_transposed_0 */, false /* is_transposed_1 */); _workspace.allocator()->allocate(); } else #endif /* defined(__arm__) || defined(__aarch64__) */ { TensorShape shape_tmp_a = a->info()->tensor_shape(); TensorShape shape_tmp_b = b->info()->tensor_shape(); shape_tmp_a.set(0, a->info()->dimension(0) * 4); shape_tmp_a.set(1, std::ceil(a->info()->dimension(1) / 4.0f)); const unsigned int transpose_w = 16 / data_size_from_type(b->info()->data_type()); shape_tmp_b.set(0, b->info()->dimension(1) * transpose_w); shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / static_cast(transpose_w))); TensorInfo info_a(shape_tmp_a, 1, a->info()->data_type(), a->info()->fixed_point_position()); TensorInfo info_b(shape_tmp_b, 1, b->info()->data_type(), a->info()->fixed_point_position()); _tmp_a.allocator()->init(info_a); _tmp_b.allocator()->init(info_b); // Manage intermediate buffers _memory_group.manage(&_tmp_a); _memory_group.manage(&_tmp_b); // Configure interleave kernel _interleave_kernel.configure(a, &_tmp_a); // Configure transpose kernel _transpose_kernel.configure(b, &_tmp_b); // Configure matrix multiplication kernel _mm_kernel.configure(&_tmp_a, &_tmp_b, d, alpha); // Allocate once the all configure methods have been called _tmp_a.allocator()->allocate(); _tmp_b.allocator()->allocate(); // Configure matrix addition kernel if(beta != 0 && c != nullptr) { _ma_kernel.configure(c, d, beta); _run_addition = true; } } } } void NEGEMM::run() { _memory_group.acquire(); if(_mm_optimised_kernel != nullptr) { NEScheduler::get().schedule(_mm_optimised_kernel.get(), Window::DimY); _memory_group.release(); } else { if(!_run_vector_matrix_multiplication) { // Run interleave kernel NEScheduler::get().schedule(&_interleave_kernel, Window::DimY); if(_is_first_run) { // Run transpose kernel NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); _is_first_run = false; } else if(!_reshape_b_only_on_first_run) { // Run transpose kernel NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); } } NEScheduler::get().schedule(&_mm_kernel, _run_vector_matrix_multiplication ? Window::DimX : Window::DimY); _memory_group.release(); // Run matrix addition kernel if(_run_addition) { NEScheduler::get().schedule(&_ma_kernel, Window::DimY); } } } } // namespace arm_compute